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Résumé

Une approche symbolique des valeurs de la fonction zéta multiple aux entiers négatifs Nous utilisons
des techniques de calcul symbolique afin d’obtenir une expression simple d’une continuation analytique de la
fonction d’Euler-Zagier, telle qu’elle est proposée dans la récente publication [1]. Cette approche nous permet de
calculer des identités de recurrence sur les fonctions génératrices ainsi que sur la profondeur de la fonction zéta.
Pour citer cet article : A. Nom1, A. Nom2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

Abstract

Symbolic computation techniques are used to derive some closed form expressions for an analytic continuation
of the Euler-Zagier zeta function evaluated at the negative integers as recently proposed in [1]. This approach
allows to compute explicitly some contiguity identities, recurrences on the depth of the zeta values and generating
functions. To cite this article: A. Nom1, A. Nom2, C. R. Acad. Sci. Paris, Ser. I 340 (2005).

1. Introduction

The multiple zeta functions, first introduced by Euler and generalized by D. Zagier [2], appear in diverse
areas such as quantum field theory [5] and knot theory [7]. These are defined by

1
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0<ky<-<k, 1

Email addresses: vhm@tulane.edu (Victor H. Moll*), 1jiu@tulane.edu (Lin Jiu), cvignat@tulane.edu (Christophe
Vignat).

Preprint submitted to the Académie des sciences March 13, 2015



where {n;} are complex values, and (1) converges when the constraints

k
Re(n,) > 1, and ZRe (Nry1-5) >k, 2<k<r, (2)
j=1
are satisfied (see [8]). Their values at integer points n = (nq,...,n,) satisfying (2) are called multiple zeta

values. An equivalent definition of these values is

1
Gr () kl>0§ﬂ>0 K (kb + k)™ kit k)
The sum of the exponents ny + - - - 4+ n,. is called the weight of the zeta value, and the number 7 of these
exponents is called its depth.

Following the result by Zhao [8] that the multiple zeta function has an analytic continuation to the
whole space C", several authors have recently proposed different analytic continuations based on a variety
of approaches: Akiyama et al. [3] used the Euler-Maclaurin summation formula and Matsumoto [4] the
Mellin-Barnes integral formula.

B. Sadaoui [1] provided recently such analytic continuation based on Raabe’s identity, which links the
multiple integral

dx
Y. (n) =
a(n) /[I’JFOO)T (r1+a)™ (w1 +a1 +22+a2)” ... (x1+ar + -+ 2z +a,)""

to the multiple zeta function

1
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by
Yo (n) = / Z (n,z)dz.
[0.1]7

B. Sadaoui uses a classical inversion argument to obtain an analytic continuation of the multiple zeta

function defined at negative integer arguments —n = (—nq,...,—n,). The argument uses the following
three steps:
- the integral Y, (n) is computed for values of ny,...,n, that satisfy the convergence conditions (2),

- the values n are replaced by —n in this result: it is then shown that Y, (—n) is a polynomial in the
variable a,

- the variables a = (a1, ..., a,) are replaced by (By,...,B;), and each Bernoulli symbol By, satisfies the
two evaluation rules:

evaluation rule 1: each power Bj, of the Bernoulli symbol B, should be evaluated as

B} — By, (3)

the p—th Bernoulli number
evaluation rule 2: for two different symbols By, and By, k # I, the product BB} is evaluated as

BYB} — B,By, (4)
the product of the Bernoulli numbers B, and B,. If k = [, the first rule applies to give the evaluation
BzBZ — Bp+q'
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Example 1. An example of depth 2, appearing in [1], is now computed using the rules above. The integral
Ya (n1,n2) is explicitly computed and, replacing (n1,ns) by (—n1, —ns) gives

na+lni+ns+2—ka ko n2+1) (n1+n2l+2—k2) (1;2)
1 2

ng-‘rlz Z Z ny+ng +2— ko 4z

kQO l10 le

Yal,ag ( ni, _n2

Then substituting the variables a; and as with the Bernoulli symbols B, and By gives

no+1lni+na+2—ka ko n2+1) (n1+n2+2*k2) (kQ)

s DYDY T

BB
k=0  1,=0  lo=0 ntny+2 -k

<2 (_n17 —n2

Using the evaluation rules (3) and (4) for the Bernoulli symbols, the multiple zeta value of depth 2 at
(—nq, —ng) is

no+1ni+no+2—ko ko n2+1) (n1+n2+2—k2) (kg)

15 lo
g — = By, By, .
G (=n1, —n2) n +1 > > > PRI S 1B,

k2=0 11=0 l2=0

The general case is given in [1, eq. (4.10)] as the (2r — 1) —fold sum *

. (Z:: ni+r—j+1— El i1 ki)

T 1 k
Cr (=1, =) = (=1 n k J
(= )= kz?kr (”+T—k)j1:[2<zfgm+7” J+1-3 J+1k)

S T

where ka, ... k. >0, 1; <k for2§j§rand11§ﬁ+r+l;:and

T_L:an, %:Zk] (6)
j=1 j=2

A symbolic expression for (5) is proposed here. This is used as a convenient tool to derive some specific
zeta values at negative integers, contiguity identities for the multiple zeta functions, recursions on their
depth and generating functions.

2. Main result

Introduce first the symbols C; 2, .. ;, defined recursively in terms of the Bernoulli symbols B, ..., B, as
By Cy + Ba)" C + Br1)"
cr — =i o (& 2) s and CPy  gyr = (Ci2,...k kt1)

with the symbolic computation rule:

C—symbols rule: All symbols C; 2 ... ; are expanded using the above identities to express them only
in terms of By. The evaluation rules (3) and (4) for the Bernoulli symbols are then applied.
Example 2. For example,

1. This corrects a typo in [1, eq. (4.10)]



(Ci+B2)™ 1212\ pnythgns—t L xm (2 B
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k=0

72 n2 n1+k
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The next result is given in terms of thls notatlon.
Theorem 2.1 The multiple zeta values (5) at the negative integers (—ny,...,—n,) are given by

is evaluated as

T

G (=0, =) = [T (=)™ cpery (7)

k=1

Proof 2.2 The inner sum in (5), in its Bernoulli symbols version,
S (TR ) (s
Iy Iy Iy ’
Uyl

1+ B)"F 1+ By (1+B,)"
The classical identity 2 for Bernoulli symbols B+ 1 = —B, with 0 defined in (6) reduces this to

(-0 BrtrRB Bk 8)

can be summed to

It follows that

(Z::j m+7"—j+1—2j:j+l ki)

nt+r—k k2 k.- -
¢ (—n)= mﬂ Z cptrrB) Brjl_IQ(

Summing first over ko gives

(EL n;+r—j+1— ZL=J‘+1 ki)

kj

(-n" n1+1png e tn,4r—1 pk BT
(r(-n)=—~——= > cprtiepe g B ] :
(n, +1) [ — j=3 (Zl nitr—j+1=30 0k )

The result now follows by summing, in order, over the remaining indices.
Observe that the reduction (8) performed in the proof allows to restate a simpler version of Sadaoui’s
formula (5) as the more tractable (r — 1) —fold sum

ZT_ n;+r—j+1— Z lki
B 1 T ( i=j s =i+ )Bl1~~~Blr
¢ (=ngy .o, —np) = (=1)" Z — - H z .
ko,....kp (Tl = k) j=2 (Z: g ng +1r— -7 +1- Zl =j+1 k; )

Observe moreover that the derivation of (7) is unchanged if the symbols By, ..., B, are replaced by a
generalization of the Bernoulli symbol B, namely the polynomial Bernoulli symbol B + z defined by

(B+2)" =B, (2),

(9)

2. this identity can be deduced from the generating function
z

exp (zB) = m.



the Bernoulli polynomial of degree n. The same proof as above yields the next statement.

Theorem 2.3 The analytic continuation of the zeta function as given in [1] can be written as

C,.(—nl,...,—nr,zl,...,z,.):HC;fﬁ(zl,...,zi) (10)
i=1
v (5 +B)" _ Bu(a) (€ (1) + Ba + )"
n 21+ n (2 n z1) + B2 + 22
Cl (=) = nl = nl,cu(zl,z?): LAl -
and

(Cro,. k(21,5 2k) + Brgr + 2ig1)"”
n

0?72,4..,]%‘,-1 (2’1; B Zk+1) =

3. A general recursion formula on the depth

The methods above are now used to produce a general recursion formula on the depth of the zeta
function.
Theorem 3.1 The multiple zeta functions satisfy the recursion rule

N, Np+1 n
G () = LS () 0 s e - B2 B ). (D)

n, +1 P
Introducing the new zeta symbol Z, with the evaluation rule >
Zrl? = Cr (*nla ceey N1, TNy — k,Z) ’
this recursion rule can be written symbolically as

n B - Zr— Ko
G (-miz) = (-1 B Em

Proof 3.2 Start from (10) and expand the last term

ny+1
(it G 2e1) + By (20)
n, +1

=G (-nr—2r-1). (12)

Cirtl(z1,. . 20) =

by using the binomial formula to produce

n,. Npt+1 r—2
)™ +1 N
Cr (—nl,...,—nr,zl,...,z,«):( ) Z (n P ) (Hclﬂ (217...,;21-))

n
s - i=1

X CPt R (a2 B TR ()

.....

Then identify
r—2
<H CIL:J’_,Z (215, Zl)) C?,H_,}i]f (2155 2r-1)

=1
as
(_1)n1+~~~+nr72+nr71+k Cr—l (_nh e =Ty, — Tl — k:; Z)

to obtain the desired result.

3. note that 22 # 1



Using the symbol Z, this identity can be rewritten as

Cr (*nlw"v*nrvzla'“azr): (Bizrfl)nr+l

and the initial value
G(-n;z) = (-1)" ——F7"—

provides the stated recursion.

4. Contiguity identities
The multiple zeta function at negative integer values satisfies contiguity identities in the z variables.

Two of them are presented here.
Theorem 4.1 The zeta function satisfies the contiguity identity

C:T‘ (_nla ceey TN RLy e Rr—15 2r + 1) - CT (_nla sy TN R, e B =1 ZT) + (_1)'”7“ (ZT - Z’r—l)nr .
Example 3. In the case of the zeta function of depth 2,

1
G2 (—=n1, —n2, 21,22 + 1) = G2 (—na, —n2, 21, 22) + (—1)n1+ (22 — Zl)n2

and the second term is expanded as

(71)n1+1 Z <T;€2>Z;L2—k (71)16 Cl (7711 B k,Zl) )
k=0

Proof 4.2 FEzxpand

—1" _—
( )Cle(zl)...C’"‘ o

Cr(*nla-"afnr;zlvu';zr—lazr+1):nr_i_l 1,...,r—2 217"'327“—2)
ne+1
e + 1 Nnyq_1+1+k
3 (I s B G 1),
k=0

and use the identity on Bernoulli polynomials

B, +1-k (20 + 1) = Byy1-k (2) + (np =k +1) Z?T_k

to produce the result.
The corresponding result for a shift in the first variable admits a similar proof.

Theorem 4.3 The depth-2 zeta function satisfies the contiguity identities

_1)n1+n2

Ca(—n1,—n2,21 +1,22) = Go (—ny, —na, 21, 22) + 21 Byt (21 + 22)

TL2+].



5. A Generating Function

The generating function of the zeta values at negative integers is defined by

w L whr
Fr(wy,...,w)= Y 22T (-m,., 0. (13)

ni!...n,!
ni,...,np>0 ! "

A recurrence for F, is presented below. The initial condition is given in terms of the generating function
for Bernoulli numbers

+Oan n w
n=0

Theorem 5.1 The generating function of the zeta values at negative integers satisfies the recurrence

1
F(wy,...,wy) = o [Froq (wi,y .. ywpm1) — Fp (—wp) Froq (w1, ., Weeo, Wem1 + wy)]

with the initial value

Moreover, the representation of the shift operator as exp (a%) o f(w) f(w+a) and Fy (w,2) =

—i [e‘w(8+z) — 1] give the recursion symbolically as

F. (wy,...,w.) =F <wr, _611)?1) oF_y(wy,...,wr_1),
so that
F, (wy,...,w.) =F (wr7 —8131> o Fy (wr_l, _awam> 0.0 <w2, _8811;1) o Fy (wy).
Proof 5.2 Start from
Fo(wy,...,w,) = Z % (—pymtne emtt L onetl ﬁ Cy. e il
ni,..n T j=1

and expand

w.

i Hcl ;€ w;Ci,... 5 _ i HCI e w;C1,. .. j e w,«BTCI 1€ (wr—1+w,)C1,.. r—1
W, seeny Wy ] yeee yeeey
Jj=1 j=1
1 1
:wi r—1 (wh 7wr—1) - 7FB (_wr) Fr—l (wla c Wp—2, Wr—1 +wr)
r T



6. Shuffle Identity

Multiple zeta values at positive integers satisty shuffle identities, such as

G2 (n1,m2) + (2 (n2,n1) + (1 (n1 +n2) = (1 (n1) G (n2) -
The analytic continuation technique used in [1] does not preserve this identity at negative integers, while
others do (for example, see [6]). The following theorem gives the correction terms.
Theorem 6.1 The zeta values at negative integers as defined in [1] satisfy the identity
(—1)"1+1n1!n2!
(n1 + ng + 2)'

Remark 1. When ny + ng is odd, By, 4n,+2 = 0 so that the shuffle identity (14) holds for {3 (—n1, —n2)
as expected, since the depth—2 zeta function is holomorphic at these points.

G2 (—n1, —n2) + G2 (—n2, —n1) + (1 (—n1 —n2) — G (—n1) G (—n2) = nitnat2.  (14)

Proof 6.2 Let 0 (w1, ws) = Fa (w1, wa) + Fa (wa,w1) + F1 (w1 +wa) — F1 (w1) Fy (w2) . An elementary
calculation gives

&+~ hooth (%) — Jooth ()

5(w1,w2) - w1 + Wo

The expansions

+oo 2k+1
1 1 wq w 1 1 w1
— — - coth (7) =S Y Bysand ——— = — <_)
w1 2 2 kZ:O (2k +2)! 2k+2 w1 + W wWo ; wWo

now produce

+oo
B
l 2k+2 k+1 —l— k—1
) == D (1) gy (wA e it
k,1=0

Identifying the coefficient of wi*wy? in this series expansion gives the result.

7. Specific multiple zeta values

This final section gives some examples of the evaluation at negative integers of the zeta function,
obtained from (5) and (12).
1: for depth r = 2,

n|Bny2  1Bng1
— = (=1 i 1
and
(_1)n+1
(s (0, —TL) = niﬂ [BnJrl + Bn+2] ° (16)
2: for depth r = 3,
(=1)" [Bn+s Bhi2 28,41

_ = -2 = 1

€3 (=n,0,0) 2 n+3 n+2 3n+1 (17)
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and

(_1)n+1 n B . Bn+1 Bn+3
n 4+ n 4+ n 4+ n 4+ '
2 (n+1)(n+2) "2 1 2

3: as a final example, the recursion rule (11) is used to compute the value (3 (0,0, —2) as

<3 (07 —n, O) =

-2 1
€(0,0,-2)= Q =3 (B°23 —38°2, +3B2; - 23)
. 1
=3 (B3¢ (0,0) = 3B2G3 (0, =1) +3B1G: (0, =2) = (2 (0, -3)) = — .
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