
A SEQUENCE OF UNIMODAL POLYNOMIALS

GEORGE BOROS AND VICTOR H. MOLL

Abstract. The purpose of this paper is to establish the unimodality and to
determine the mode of a class of Jacobi polynomials which arises in the exact
integration of certain rational functions as well as in the Taylor expansion of
the double square root.

1. Introduction

A finite sequence of real numbers {d0, d1, · · · , dm} is said to be unimodal if there
exists an index 0 ≤ j ≤ m such that d0 ≤ d1 ≤ · · · ≤ dj and dj ≥ dj+1 ≥ · · · ≥ dm.
A polynomial is said to be unimodal if its sequence of coefficients is unimodal. The
sequence {d0, d1, · · · , dm} with dj ≥ 0 is said to be logarithmically concave (or log

concave for short) if dj+1dj−1 ≤ d2
j for 1 ≤ j ≤ m − 1. It is easy to see that if a

sequence is log concave then it is unimodal [16].
Unimodal polynomials arise often in combinatorics, geometry, and algebra, and

have been the subject of considerable research. The reader is referred to [11, 6]
for surveys of the diverse techniques employed to prove that specific families of
polynomials are unimodal. In this paper we prove the unimodalityof a specific class

of Jacobi polynomials. The general Jacobi polynomials P
(α,β)
m (z) can be defined by

P (α,β)
m (z) =

m
∑

k=0

(−1)m−k

(

m + β

m − k

)(

m + k + α + β

k

)(

z + 1

2

)k

(1.1)

(see [1], page 189) or by

P (α,β)
m (z) =

(−m − β)m

m!
2F1

[

−m, m + 1 + α + β, 1 + β,
1 + z

2

]

.

([8], 8.962.1). Here

2F1[a, b, c; z] =

∞
∑

k=0

(a)k(b)k

(c)k
zk(1.2)

is the hypergeometric function and (r)k is the rising factorial

(r)k = r(r + 1)(r + 2) · · · (r + k − 1) =
Γ(r + k)

Γ(r)
.

Many classical families of polynomials are special cases of Jacobi polynomials.

For instance the Legendre polynomials are P
(0,0)
m (z) and the Gegenbauer polyno-

mials are scalar multiples of P
(λ−1/2,λ−1/2)
m (z). General information about these

polynomials can be obtained in [13, 15].
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We consider the polynomials

Pm(a) =

m
∑

l=0

dl(m)al,(1.3)

with

dl(m) = 2−2m
m
∑

k=l

2k

(

2m − 2k

m − k

)(

m + k

m

)(

k

l

)

.(1.4)

The polynomials Pm(a) arise in our development of a new procedure for the exact
integration of rational functions, wherein we consider

N0,4(a; m) :=

∫

∞

0

dx

(x4 + 2ax2 + 1)m+1 .(1.5)

We have shown [4]

N0,4[a; m] =
π

2m+3/2(a + 1)m+1/2
Pm(a)(1.6)

where

Pm(a) := P (m+1/2,−m−1/2)
m (a),(1.7)

so that Pm(a) is of the type P
(α,β)
m (a) with α = m + 1

2 and β = −(m + 1
2 ). After

some simplification (1.7) yields

Pm(a) = 2−2m
m
∑

k=0

2k

(

2m − 2k

m − k

)(

m + k

m

)

(a + 1)k,(1.8)

and expanding the powers of a + 1 gives (1.4). We thus obtain

N0,4(a; m) :=

∫

∞

0

dx

(x4 + 2ax2 + 1)m+1

=
π

23m+3/2(a + 1)m+1/2

m
∑

k=0

2k

(

2m − 2k

m − k

)(

m + k

m

)

(a + 1)k.

This formula gives an efficient procedure for the evaluation of N0,4[a; m]. For ex-
ample

1

π

∫

∞

0

dx

(x4 + 7x2 + 1)50
=

11484566453797313938373272869590752255710406452908430305538534474718664875

756155814236193178352650772173678033029101516751105175397074035149880950784
.

Apart from its intrinsic interest, the sequence N0,4(a; m) appears as the coeffi-
cients of the Taylor expansion of the double square root:

y :=

√

a +
√

1 + c =
√

a + 1 +
1

π
√

2

∞
∑

k=1

(−1)k−1

k
N0,4(a; k − 1)ck

=
√

a + 1

(

1 +

∞
∑

k=1

(−1)k−1Pk−1(a)

k2k+1(a + 1)k
ck

)

.(1.9)

(See [4] for details.) The power series expansion of roots of αqyp − yq + 1 = 0
was initiated by Lagrange [9]. Examples of his technique, the Lagrange inversion
formula, can be found in [7, 10]. In this case y, defined by (1.9) satisfies an algebraic
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equation from which a Lagrange-type expansion can be obtained; our expansion in
(1.9) is simpler.

Two special cases of (1.9) appear in the literature. The case a = 1 appears in
[7],

√

1 +
√

1 + c =
√

2

(

1 +

∞
∑

k=1

(−1)k−1

k

1

24k−1

(

4k − 3

2k

)

ck

)

,

and the case c = a2,
√

a +
√

1 + a2 = 1 +
1

2
a +

∞
∑

k=2

bk(1/2)ak

k!

where, for k ≥ 2,

bk(n) =

{

n2(n2 − 22)(n2 − 42) · · · (n2 − (k − 2)2), if k is even,

n(n2 − 12)(n2 − 32) · · · (n2 − (k − 2)2), if k is odd.

is a special case of Corollary 2 to Entry 14 of Ramanujan’s Notebooks, as described
in [2].

A sufficient condition for unimodality of a polynomial is to have all its zeros real
and negative(see [16] for a proof). This can be used to prove unimodality of a given
sequence. For example, the signless Stirling numbers of the first kind, [ n

k ], defined
by their generating function

∑

j

[ n
k ] xj−1 = (x + 1)(x + 2) · · · (x + n − 1),(1.10)

are unimodal.
In Section 3 we discuss the sequence of zeros of the polynomial Pm(a). We show

that all the zeros satisfy |a+1| < 1 and that Pm(a) has the minimal number of real
zeros that is possible: none for m even and 1 for m odd. We conjecture that, for m
odd, the distance of the zeros to −1 is bounded from below by the modulus of the
unique real zero. Our numerical studies suggest that the behavior of these zeros is
analogous to that of the zeros of the partial sums of the exponential as discussed
in [14].

2. Unimodality of the polynomial Pm(a)

In this section we prove that the coefficients of the polynomial Pm are unimodal.
More precisely, we prove that the coefficients increase up to the central coefficient
(i.e., the coefficient of a[m/2], and they decrease from then on. The proof is elemen-
tary in the sense that no property of the Jacobi family is employed.

Start with the expression (1.4) and define the difference

∆dl(m) = dl+1(m) − dl(m).(2.1)

We claim

Theorem 2.1. For fixed m, the polynomial Pm(a) is unimodal. More precisely:
a) ∆ dl(m) > 0 for 0 ≤ l <

[

m
2

]

b) ∆ dl(m) < 0 for
[

m
2

]

≤ l ≤ m − 1.
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c) The smallest coefficient is the leading term

dm(m) = 2−m

(

2m

m

)

.(2.2)

Part (c) follows immediately from parts (a) and (b). The remainder of this proof
is divided into a sequence of lemmas.

Lemma 2.2. The difference ∆ dl(m) is given by

∆ dl(m) =
1

4m

(

m + l

m

) m
∑

k=l

2k

(

2m − 2k

m − k

)(

m + k

m + l

)

× k − 2l − 1

l + 1
.(2.3)

Proof. This is elementary. �

Lemma 2.3. ∆ dl(m) < 0 for
[

m
2

]

≤ l ≤ m − 1.

Proof. This follows directly from (2.3). If l ≤ k ≤ m then

k − 2l − 1 ≤ k − 2
[m

2

]

− 1 ≤ k − m ≤ 0

and k = l produces a strictly negative term. This proves part b). �

The proof of part a) is more delicate. First observe that the terms in (2.3) are
positive for k > 2l + 1 and negative otherwise. Therefore we need to prove

2l
∑

k=l

2k(2l + 1 − k)

(

2m− 2k

m − k

)(

m + k

m + l

)

<
m
∑

k=2l+2

2k(k − 2l − 1)

(

2m − 2k

m − k

)(

m + k

m + l

)

.

(2.4)

Lemma 2.4. Let 0 ≤ l <
[

m
2

]

. Suppose

2l
∑

k=l

2k(2l + 1 − k)

(

2m − 2k

m − k

)(

m + k

m + l

)

<

m
∑

k=2l+2

2k

(

2m − 2k

m − k

)(

m + k

m + l

)

(2.5)

holds. Then ∆ dl(m) > 0 and the proof of part a) is finished.

Proof. This is obtained by replacing the term k − 2l − 1 on the right hand side of
(2.4) by 1, and observe that this makes the required inequality stricter. �

Lemma 2.5. Let 0 ≤ l <
[

m
2

]

. Suppose

2l
∑

k=l

2k(2l + 1 − k)

(

2m − 2k

m − k

)(

m + k

m + l

)

< 2m

(

2m

m + l

)

(2.6)

holds. Then ∆ dl(m) > 0 and the proof of part a) is finished.
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Proof. The inequality (2.5) is strengthen one more time by replacing the sum on
the right by its last term. The lemma is proved. �

The inequality in (2.6) that is required to finish the proof, is now written as

Sm,l :=
2l
∑

k=l

(

m − l

m − k

)(

m + k

2k

)(

2m

2k

)

−1

× 2l + 1 − k

2m−k
< 1.(2.7)

Lemma 2.6. Suppose Sm,l < 1. Then ∆ dl(m) > 0 for 0 ≤ l <
[

m
2

]

and the proof
of theorem 1 is complete.

We now study the sums Sm,l and we first prove:

Lemma 2.7. For fixed m, the sum Sm,l is increasing in l. In particular it is
maximum when l is, i.e., at l =

[

m−1
2

]

. Therefore, if

Sm,[m−1

2
] < 1(2.8)

then ∆ dl(m) > 0 and the proof of Theorem 1 is finished.

Proof. The inequality Sm,l+1 > Sm,l is equivalent to

2l+2
∑

k=l+1

(

m − l − 1

m − k

)(

m + k

2k

)

(2l + 3 − k)

(

2m

2k

)

−1

2−m+k >

2l
∑

k=l

(

m − l

m − k

)(

m + k

2k

)

(2l + 1 − k)

(

2m

2k

)

−1

2−m+k.(2.9)

There are l + 2 terms on the left term and l + 1 on the right. To prove (2.9) it
suffices to show that, for j = 2l, 2l − 1, · · · , l, the term corresponding to k = j + 2
in Sm,l+1 is larger than the term corresponding to k = j in Sm,l. This amounts to

(

m − l − 1

m − j − 2

)(

m + j + 2

2j + 4

)

(2l + 1 − j)2−m+j+2

(

2m

2j + 4

)

−1

>

(

m − l

m − j

)(

m + j

2j

)

(2l + 1 − j)2−m+j

(

2m

2j

)

−1

.(2.10)

Inequality (2.10) is equivalent to

X :=
(m − j)(m − j − 1)(m + j + 2)(m + j + 1)

(m − l)(j − l + 1)(2m− 2j − 1)(2m − 2j − 3)
> 1(2.11)

by direct computation.

We now show that X > 1. The proof is divided according to the parity of m.
Suppose first that m is even, say m = 2n. Then l ≤ n − 1. We now show that the
expression Y , obtained from X by replacing l by n−1 satisfies Y > 1. This finishes
the proof, in view of X ≥ Y . The expression Y is given by

Y =
(2n − j)(2n − j − 1)(2n + j + 2)(2n + j + 1)

(n + 1)(j − n + 2)(4n− 2j − 1)(4n − 2j − 3)
(2.12)
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and it can be written as

Y =
2(2n − j)

4n − 2j − 1
× 2(2n− j − 1)

4n − 2j − 3
× (n + 1 + j/2)

n + 1
× (2n + j + 1)/2

j − n + 2
.

(2.13)

The first three factors are clearly above 1. The last one is also bigger than 1 because
4n ≥ 2j + 4 > j + 3. This proves X > 1 for m even. The case m odd is handled in
a similar form. The proof of the lemma is finished. �

We finally have:

Lemma 2.8. The maximal sum Sm,[m−1

2
] is strictly less than 1.

Proof. As before, the proof is divided according to the parity of m. We give the
details for m even, say m = 2n. then l = n − 1 and we need to show

2n−2
∑

k=n−1

(

4n − 2k

2n− k

)(

n + 1

2n − k

)

(2n − 1 − k)2−2n+k

(

4n

2n− k

)

−1

< 1.(2.14)

The substitution r = 2n − k show that we need to prove

n+1
∑

r=2

(

2r

r

)(

n + 1

r

)

(r − 1)2−r

(

4n

r

)

−1

< 1.(2.15)

Define

an,r =

(

2r

r

)(

n + 1

r

)

(r − 1)2−r

(

4n

r

)

−1

, for 2 ≤ r ≤ n + 1.(2.16)

We now show that the lemma follows from the estimate
an,r+1

an,r
<

5

6
(2.17)

Proof. From (2.17) it follows that

an,r < an,2 ×
(

5

6

)r−2

so
n+1
∑

r=2

an,r < an,2

n+1
∑

r=2

(

5

6

)r−2

< 6

[

1 −
(

5

6

)n]

an,2

and using an,2 = 3(n + 1)/[8(4n − 1)], and the bound (n + 1)/(4n − 1) ≤ 3/7 for
n ≥ 2, we get

n+1
∑

r=2

an,r <
27

28

[

1 −
(

5

6

)n]

< 1.

The case n = 1 is simple: a1,2 = 1/2. �

Therefore, the proof of Theorem 1 is reduced to the proof of the estimate (2.17). �
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Proof of (2.17). Define

qn,r =
an,r+1

an,r
for 2 ≤ r ≤ n

so that

qn,r =
r(2r + 1)(n + 1 − r)

(r + 1)(r − 1)(4n − r)
.(2.18)

We first observe that qn,r is strictly increasing with n. Indeed,

qn+1,r

qn,r
=

(n − r + 2)(4n− r)

(n − r + 1)(4n + 4 − r)

and for r = 2 we have

qn+1,2

qn,2
=

2n2 − n

2n2 − n − 1
> 1.

Now, for r ≥ 3 we have

qn+1,r

qn,r
=

{

1 +
1

n − r + 1

}{

1 +
4

4n − r

}

−1

>

{

1 +
1

n − r + 1

}{

1 − 4

4n − r

}

= 1 +
(3r − 8)

(n − r + 1)(4n − r)

> 1.

Passing to the limit as n → ∞ in (2.18), with fixed r, we obtain

qn,r < lim
n→∞

qn,r =
r(2r + 1)

4(r + 1)(r − 1)

and an elementary calculation shows that the right hand side is decreasing for r ≥ 2.
We conclude that

an,r+1

an,r
= qn,r <

2(2 · 2 + 1)

4(2 + 1)(2 − 1)
=

5

6
.

The final statement c) is a consequence of the elementary inequality

m
∏

l=1

(m + l) <

m
∏

l=1

(4l − 1).

This completes the proof of the theorem.

There are other classes of Jacobi polynomials that are unimodal. We propose:

Problem 2.9. Let m ∈ N and 0 < j < 2n. Then the sequence of polynomials

P j
m(a) := P (m+1,−(2m−j)

m (a)

is unimodal. The coefficients ak increase from the constant a0 to a
[
j+1
2 ]

and decrease

from then on.
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Note. We have computed the sum (2.15) for large values of n, and we conjecture

lim
n→∞

n+1
∑

r=2

(

2r

r

)(

n + 1

r

)

(r − 1)2−r

(

4n

r

)

−1

= 1 − ln 2.(2.19)

Using Mathematica 3.0 we found that

S(n) :=

(

2r

r

)(

n + 1

r

)

(r − 1)2−r

(

4n

r

)

−1

= 1 − 2F1

[

1

2
,−1 − n,−4n; 2

]

+
1 + n

2
2F1

[

3

2
,−n, 1 − 4n; 2

]

so perhaps it is possible to prove (2.19) from here.

3. The structure of the zeros

In this section we discuss the location and nature of the zeros of the polynomial
Pm(a). We employ the explicit expression

Pm(a) = 2−2m
m
∑

k=0

2k

(

2m − 2k

m − k

)(

m + k

m

)

(a + 1)k(3.1)

to obtain a bound on the zeros and then the fact that Pm(a) is a Jacobi polynomial

Pm(a) = P (m+1/2,−m−1/2)
m (a)

to determine the exact number and location of the real zeros of Pm(a).

3.1. The real zeros. We use the fact that Pm(a) = P
(m+1/2,−m−1/2)
m (a) is part

of the Jacobi family to determine the number of real zeros. This number of such
zeros is obtained by a formula developed by Klein, Hilbert and Stieltjes. Introduce
the Klein symbol E(u) via

E(u) =











0 if u ≤ 0

[u] if u > 0 and u is non-integral

u − 1 if u = 1, 2, · · · .

(3.1)

Denote by N1, N2, N3 the number of zeros of P
(α,β)
m (a) in −1 < a < 1, a < −1,

and a > 1, respectively. Then the values Ni can be expressed in terms of

X = X(α, β) = E
(

1
2 (|2m + α + β + 1| − |α| − |β| + 1)

)

Y = Y (α, β) = E
(

1
2 (−|2m + α + β + 1| + |α| − |β| + 1)

)

Z = Z(α, β) = E
(

1
2 (−|2m + α + β + 1| − |α| + |β| + 1)

)

via the formula

N1 =

{

2
[

X+1
2

]

if (−1)m
(

m+α
m

)(

m+β
m

)

> 0

2
[

X
2

]

+ 1 if (−1)m
(

m+α
m

)(

m+β
m

)

< 0

N2 =

{

2
[

Y +1
2

]

if
(

2m+α+β
m

)(

m+β
m

)

> 0

2
[

Y
2

]

+ 1 if
(

2m+α+β
m

)(

m+β
m

)

< 0

N3 =

{

2
[

Z+1
2

]

if
(

2m+α+β
m

)(

m+α
m

)

> 0

2
[

Z
2

]

+ 1 if
(

2m+α+β
m

)(

m+α
m

)

< 0.
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This is formula is explained in Szego [13], page 145. In our case α = m + 1/2 and
β = −(m + 1/2) so that

X = E
{

1
2 (|2m + 1| − |m + 1/2| − |m + 1/2|+ 1)

}

= E{ 1
2} = 0

Y = E
{

1
2 (−|2m + 1| + |m + 1/2| − |m + 1/2|+ 1)

}

= E{−m} = 0

Z = E
{

1
2 (−|2m + 1| − |m + 1/2|+ | − m − 1/2|+ 1)

}

= E{−m} = 0.

We also have
(

m + α

m

)

=

(

2m + 1/2

m

)

> 0

(

m + β

m

)

=

(−1/2

m

)

= (−1)m × (1/2)(1/2 + 1) · · · (1/2 + m − 1)

m!

= (−1)m × a positive factor
(

2m + α + β

m

)

=

(

2m

m

)

> 0.

From here it follows that

N1 = 2[(X + 1)/2] = 0

so there are no zeros for −1 < a < 1.
Similarly

N2 =

{

2[(Y + 1)/2] = 0 if (−1)m > 0

2[Y/2] + 1 = 1 if (−1)m < 0

so there are no zeros for a < −1 if m is even and a single real zero if m is odd.
Finally

N3 = 2[(Z + 1)/2] = 0

so there are no zeros for a > 1. We have proven

Theorem 3.1. The polynomial Pm(a) has no real zeros for m even and a single
real zero, located in a < −1, for m odd.

3.2. Bounds on the zeros and numerical calculations. We now establish up-
per bounds for the modulus of the zeros of Pm(a) and describe the results of their
numerical calculations.

Define

ck(m) = 2−2m+k

(

2m − 2k

m − k

)(

m + k

m

)

(3.1)

then

ck+1

ck
=

(m − k)(m + k + 1)

2m − 2k − 1)(k + 1)
> 1, for 0 ≤ k ≤ m − 1.

Therefore the coefficients of Pm, as a polynomial in b = a + 1, are positive and
increasing. The Enerstrom-Kakeya theorem ( see [5], page 12) guarantees that all
its zeros are inside the unit circle of the b-plane:

Theorem 3.2. Let aj : 1 ≤ j ≤ m be the sequence of zeros of Pm(a) = 0. Then
|aj + 1| < 1.
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-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1 1.5

roots up to degree 50

0

0.02

0.04

0.06

0.08

0.1

y

-0.1 -0.05 0 0.05 0.1
x

scaled roots up to degree 75

We have computed numerical approximations to the zeros aj . These calculation
indicate that the bound in Theorem 3 is optimal: we propose

Problem 3.3. Prove that

lim
m→∞

max{|aj + 1| : 1 ≤ j ≤ m} = 1

In figure 1 we show the zeros of P75(a). The behavior is typical: the zeros
are concentrated in a narrow oval shape curve. Moreover, for m odd, the zero of
smallest modulus is the real zero areal < −1.

Problem 3.4. Prove that

min{|aj | : 1 ≤ j ≤ m} = −areal.
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In figure 2 we show the zeros of all the polynomials in the sequence Pm(a) for
1 ≤ m ≤ 75. We observe that these zeros concentrate in a narrow lemniscatic

region. A similar behavior is observed in the study of the zeros of partial sums
sm(a) of the exponential function, see [14] for details. In this case, Szego [12]
considered the normalized sequence sm(ma) and proved that the limit points of the
zeros of the normalized polynomial fill the part of the lemniscate |ae1−a| = 1 inside
the closed unit circle. In our case, the zeros of the normalized sequence Pm(ma)
converge to 0. We have observed that as they do, they form an inner lemniscate,
but we have been unable to predict its equation.

4. Conclusions

In this paper we have shown that the coefficients of the Jacobi polynomial

Pm(a) := P (m+1/2,−m−1/2)
m (a) = 2−2m

m
∑
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are unimodal. We have also examined the structure of the zeros of Pm(a).

The refernces also include [3].
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