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1. Wallis’ infinite product for π

Among the earliest analytic expressions for π one finds two infinite products:
the first one given by Vieta [20] in 1593
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and the second by Wallis [21] in 1655
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In this journal, T. Osler [15] has presented the remarkable formula

2
π

=
p∏

n=1

√√√√√1
2

+
1
2

√√√√1
2

+

√
1
2

+ · · ·+ 1
2

√
1
2

∞∏
n=1

2p+1n− 1
2p+1n

· 2p+1n+ 1
2p+1n

.

This equation becomes Wallis’ product when p = 0 and Vieta’s formula as p→∞.
It is surprising that such a connection between the two products was not discovered
earlier.

The collection [1] contains both original papers of Vieta and Wallis as well as
other fundamental papers in the history of π. Indeed, there are many good historical
sources on π. The text by P. Eymard and J. P. Lafon [6] is an excellent place to
start.

Wallis’ formula (1.1) is equivalent to

(1.2) Wn :=
n∏
k=1

(2k) · (2k)
(2k − 1) · (2k + 1)

=
24n(

2n
n

) (
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→ π

2

as n→∞. This may be established using Stirling’s approximation

m! ∼
√

2πm
(m
e

)m
.

Alternatively, there are many elementary proofs of (1.2) in the literature. Among
them, [22] and [12] have recently appeared in this journal.

Section 3 presents a proof of (1.2) based on the evaluation of the rational integral

(1.3) Gn :=
2
π

∫ ∞
0

dx

(x2 + 1)n
.
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This integral is discussed in the next section. The motivation to generalize (1.3)
has produced interesting links to symmetric functions from Combinatorics and to
one-loop Feynman diagrams from Particle Physics. The goal of this work is to
present these connections.

2. A rational integral and its trigonometric version

The method of partial fractions reduces the integration of a rational function
to an algebraic problem: the factorization of its denominator. The integral (1.3)
correspondes to the presence of purely imaginary poles. See [3] for a treatment of
these ideas.

A recurrence for Gn is obtained by writing 1 = (x2 + 1)− x2 for the numerator
of (1.3) and integrating by parts. The result is

(2.1) Gn+1 =
2n− 1

2n
Gn.

Since G1 = 1 it follows that

(2.2) Gn+1 =
1

22n

(
2n
n

)
.

The choice of a new variable is one of the fundamental tools in the evaluation
of definite integrals. The new variable, if carefully chosen, usually simplifies the
problem or opens up unsuspected possibilities. Trigonometric changes of variables
are considered elementary because these functions appear early in the scientific
training. Unfortunately, this hides the fact that this change of variables introduces
a transcendental function with a multivalued inverse. One has to proceed with care.

The change of variables x = tan θ in the definition (1.3) of Gn gives

Gn+1 =
2
π

∫ π/2

0

(cos θ)2n dθ.

In this context, the recurrence (2.1) is obtained by writing

(cos θ)2n = (cos θ)2n−2 − sin θ
2n− 1

d

dθ
(cos θ)2n−1

and then integrating by parts. Yet another recurrence for Gn is obtained by a
double-angle substitution in

Gn+1 =
2
π

∫ π/2

0

(
1 + cos 2θ

2

)n
dθ,

and a binomial expansion (observe that the odd powers of cosine integrate to zero).
It follows that

Gn+1 = 2−n
bn/2c∑
k=0

(
n

2k

)
Gk+1.

Thus, proving (2.2) is equivalent to the finite sum identity

(2.3)
bn/2c∑
k=0

2−2k

(
n

2k

)(
2k
k

)
= 2−n

(
2n
n

)
.

There are many possible ways to prove this identity. For instance, it is a per-
fect candidate for the truly 21st century WZ-method [16] that provides automatic
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proofs; or, as pointed out by M. Hirschhorn in [9], it is a disguised form of the
Chu-Vandermonde identity

(2.4)
∑
k≥0

(
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k

)(
y

k

)
=
(
x+ y

x

)
(which was discovered first in 1303 by Zhu Shijie). Namely, upon employing Le-
gendre’s duplication formula for the gamma function

Γ( 1
2 )Γ(2z + 1) = 22zΓ(z + 1)Γ(z + 1

2 )

the identity (2.3) rewrites as∑
k≥0
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1
2
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)
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2
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1
2
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This is a special case of (2.4).

Remark 2.1. The idea of double-angle reduction lies at the heart of the rational
Landen transformations. These are polynomial maps on the coefficient of the inte-
gral of a rational function that preserve its value. See [13] for a survey on Landen
transformations and open questions.

3. A squeezing method

In this section we employ the explicit expression for Gn, given in (2.2), to estab-
lish Wallis’ formula (1.1). The proof is based on analyzing the integrals

In :=
∫ π/2

0

(sinx)n dx.

The formula

I2n =
∫ π/2

0

(sinx)2n dx =
(2n− 1)!!

(2n)!!
π

2
follows from (2.2) by symmetry. Its companion integral

I2n+1 =
∫ π/2

0

(sinx)2n+1 dx =
(2n)!!

(2n+ 1)!!

is of the same flavor. Here n!! = n(n − 2)(n − 4) · · · {1 or 2} denotes the double
factorial. The ratio of these two integrals gives

WnI2n/I2n+1 =
π

2
where Wn is defined by (1.2). The convergence of Wn to π/2 now follows from the
inequalities 1 ≤ I2n/I2n+1 ≤ 1 + 1/(2n). This in turn is equivalent to

2n
∫ π/2

0

(sinx)2n dx ≤ (2n+ 1)
∫ π/2

0

(sinx)2n+1 dx.

The proof that I2n/I2n+1 ≤ 1 + 1/(2n) follows directly from the bound I2n ≤
I2n−1 and the recurrence (2n+ 1)I2n+1 = 2nI2n−1. Alternatively, observe that the
function

f(s) = s

∫ π/2

0

(sinx)s dx
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is increasing. This may be seen from the change of variables t = sinx and a series
expansion of the new integrand yielding

(3.1) f ′(s) =
∞∑
k=0

1
22k

(
2k
k

)
2k + 1

(2k + s+ 1)2
> 0.

Remark 3.1. Comparing the series (3.1) at s = 0 with the limit

f ′(0) = lim
s→0

f(s)
s

= lim
s→0

∫ π/2

0

sins x dx =
π

2
immediately proves

∞∑
k=0

(
2k
k

)
2−2k

2k + 1
=
π

2
.

This value may also be obtained after integrating the generating function
∞∑
k=0

(
2k
k

)
x2k

2k + 1
=

sin−12x
2x

,

and letting x = 1
2 . The reader will find in [11] a host of other interesting series that

involve the central binomial coefficients.

4. An example of Ramanujan and a generalization

A natural generalization of Wallis’ integral (1.3) is given by

(4.1) Gn(q) =
2
π

∫ ∞
0

n∏
k=1

1
x2 + q2k

dx,

where q = (q1, q2, . . . , qn) with qk ∈ C. This notation will be employed throughout.
Similarly, qα is used to denote (qα1 , q

α
2 , . . . , q

α
n). As the value of the integral (4.1)

is independent under a change of sign of the parameters qk, it is assumed that
<qk > 0. Note that the integral Gn(q) is a symmetric function of q that reduces
to Gn in the special case q1 = . . . = qn = 1.

The special case n = 4 appears as Entry 13, Chapter 13, of B. Berndt’s volume
2 of Ramanujan’s Notebooks [2], in the form1:

Example 4.1. Let q1, q2, q3 and q4 be positive real numbers. Then

2
π

∫ ∞
0

dx

(x2 + q21)(x2 + q22)(x2 + q23)(x2 + q24)
=

(q1 + q2 + q3 + q4)3 − (q31 + q32 + q33 + q34)
3q1q2q3q4(q1 + q2)(q2 + q3)(q1 + q3)(q1 + q4)(q2 + q4)(q3 + q4)

.

Using partial fractions the following general formula for Gn(q) is obtained. In
the next section a representation in terms of Schur functions is presented.

Lemma 4.2. Let q = (q1, . . . , qn) be distinct and <qk > 0. Then

(4.2) Gn(q) =
n∑
k=1

1
qk

n∏
j=1

j 6=k

1
q2j − q2k

.

1A minor correction from [2].
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Proof. Observe first that if b1, b2, . . . , bn are distinct then

(4.3)
n∏
k=1

1
y + bk

=
n∑
k=1

1
y + bk

n∏
j=1

j 6=k

1
bj − bk

.

Replacing y by x2 and bk by q2k and using the elementary integral

2
π

∫ ∞
0

dx

x2 + q2
=

1
q

produces the desired evaluation of Gn(q). �

Remark 4.3. Gn(q), as defined by (4.1), is a symmetric function in the qi’s which
remains finite if two of these parameters coincide. Therefore, the factors qj − qk in
the denominator of the right hand side of (4.2) cancel out. This may be checked
directly by combining the summands corresponding to j and k. Alternatively,
note that the right hand side of (4.2) is symmetric while the critical factors qj −
qk in the denominator combine to the antisymmetric Vandermonde determinant.
Accordingly, they have to cancel.

Example 4.4. The special case qk = qk produces the evaluation

(4.4)
2
π

∫ ∞
0

n∏
k=1

1
x2 + q2k

=
1
qn2

n−1∏
j=1

1− q2j−1

1− q2j
.

This may be deduced inductively from Lemma 4.2. Taking the limit q → 1 in (4.4)
reproduces formula (2.2) for Gn. In other words, (4.4) is a q-analog [7] of (2.2).
Similarly,

πq
1 + q

= q1/4
∞∏
n=1

1− q2n

1− q2n−1

1− q2n

1− q2n+1

is a useful q-analog of Wallis’ formula (1.2) which naturally appears in [10] where
Gosper studies q-analogs of trigonometric functions.

The question of an explicit formula for the numerators appearing on the right-
hand side of (4.2) is discussed in the next section.

5. Representation in terms of Schur functions

The expression for Gn(q) developed in this section is given in terms of Schur
functions. The reader is referred to [4] for a motivated introduction to these func-
tions in the context of alternating sign matrices and to [17] for their role in the
representation theory of the symmetric group. Among the many equivalent def-
initions for Schur functions, we now recall their definition in terms of quotients
of alternants. This way, we are able to associate a Schur function not only to a
partition but more generally to arbitrary vectors.

Here, a vector µ = (µ1, µ2, . . .) means a finite sequence of real numbers. µ is
further called a partition if µ1 ≥ µ2 ≥ . . . and all the parts µj are positive integers.
Write 1n for the partition with n ones, and denote with λ(n) the partition

λ(n) = (n− 1, n− 2, . . . , 1).

Vectors and partitions may be added componentwise. In case they are of different
length, the shorter one is padded with zeroes. For instance, one has λ(n + 1) =
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λ(n) + 1n. Likewise, vectors and partitions may be multiplied by scalars. In
particular, a · 1n is the partition with n a’s.

Fix n and consider q = (q1, q2, . . . , qn). Let µ = (µ1, µ2, . . .) be a vector of length
at most n. The corresponding alternant aµ is defined as the determinant

aµ(q) =
∣∣qµj

i

∣∣
1≤i,j≤n .

Again, µ is padded with zeroes if necessary. Note that the alternant aλ(n) is the
classical Vandermonde determinant

aλ(n)(q) =
∣∣∣qn−ji

∣∣∣
1≤i,j≤n

=
∏

1≤i<j≤n

(qi − qj).

The Schur function sµ associated with the vector µ can now be defined as

sµ(q) =
aµ+λ(n)(q)
aλ(n)(q)

.

If µ is a partition with integer entries this is a symmetric polynomial. Indeed, as µ
ranges over the partitions of m of length at most n, the Schur functions sµ(q) form
a basis of the homogeneous symmetric polynomials in q of degree m.

The Schur functions include as special cases the elementary symmetric functions
ek and the complete homogeneous symmetric functions hk. Namely, ek(q) = s1k(q)
and hk(q) = s(k)(q).

The next result expresses the integral Gn(q) as a quotient of Schur functions.

Theorem 5.1. The integral Gn(q) defined in (4.1) evaluates as

(5.1) Gn(q) =
sλ(n−1)(q)
sλ(n+1)(q)

=
sλ(n−1)(q)

en(q)sλ(n)(q)
.

Proof. From the previous definition of Schur functions, the right hand side of (5.1)
becomes

sλ(n−1)(q)
en(q) sλ(n)(q)

=
aλ(n−1)+λ(n)(q)
en(q)a2λ(n)(q)

.

Observe that a2λ(n)(q) = |q2n−2j
i |i,j = aλ(n)(q2) is simply the Vandermonde deter-

minant with qi replaced by q2i . Next, expand the determinant aλ(n−1)+λ(n) by the
last column (which consists of 1’s only) to find

aλ(n−1)+λ(n)(q) = en(q)
n∑
k=1

(−1)n−k

qk
aλ(n−1)(q21 , q

2
2 , . . . , q

2
k−1, q

2
k+1, . . . , q

2
n).

Therefore

(5.2)
aλ(n−1)+λ(n)(q)
en(q) a2λ(n)(q)

=
n∑
k=1

(−1)n−k

qk

∏
i<j

i,j 6=k

(q2i − q2j )
/∏
i<j

(q2i − q2j ).

Observe that the only terms that do not cancel in the quotient above are those for
which i = k or j = k. The change of sign required to transform the factors q2k − q2j
to q2j − q2k eliminates the factor (−1)n−k. The expression on the right hand side of
(5.2) is precisely the value (4.2) of the integral Gn(q) produced by partial fractions.

It remains to show that en(q)sλ(n)(q) = sλ(n+1)(q). This amounts to the identity

q1q2 · · · qn
∣∣∣q2n−2j
i

∣∣∣
i,j

=
∣∣∣q2n−2j+1
i

∣∣∣
i,j
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which follows directly by inserting the factors qi one at a time per row. �

The proof of Theorem 5.1 extends to the following more general result.

Lemma 5.2. It holds that
n∑
k=1

1

qα−βk

n∏
j=1

j 6=k

1
qαj − qαk

=
sλ(q)
sµ(q)

where

λ = (α− 1) · λ(n)− β · 1n−1,

µ = (α− 1) · λ(n+ 1)− (β − 1) · 1n.

As a consequence, one obtains the following integral evaluation which generalizes
the evaluation of Gn(q) given in Theorem 5.1.

Theorem 5.3. Let α > 0 and 0 < β < αn such that β is not an integer multiple
of α. Then

Gn,α,β(q) :=
sin(πβ/α)

π/α

∫ ∞
0

xβ−1∏n
k=1(xα + qαk )

dx =
sλ(q)
sµ(q)

where λ, µ are as in Lemma 5.2.

Proof. Upon writing β = bα + β1 for b < n a positive integer and 0 < β1 < α, the
assertion follows from the partial fraction decomposition

xbα∏n
k=1(xα + qαk )

= (−1)b
n∑
k=1

qbαk
xα + qαk

∏
j 6=k

1
qαj − qαk

,

the integral evaluation ∫ ∞
0

xβ1−1dx

xα + qα
=

1
qα−β1

π/α

sin(πβ1/α)
,

and Lemma 5.2. �

The next few examples illustrate Theorem 5.1 with particular specializations of
the parameters q.

Example 5.4. The identities

2
π

∫ ∞
0

n+1∏
j=1

1
x2 + j2

dx =
1

(2n+ 1)n!(n+ 1)!
,

2
π

∫ ∞
0

n+1∏
j=1

1
x2 + (2j − 1)2

dx =
1

22n(2n+ 1)(n!)2
,

2
π

∫ ∞
0

n∏
j=1

1
x2 + 1/j2

dx =
2A(2n− 1, n− 1)(

2n
n

)
may be proved inductively. Here A(n, k) are the Eulerian numbers (the number of
permutations of n objects with exactly k descents).
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6. Schur functions in terms of SSYT

The Schur function sλ(q) associated to a partition λ also admits a representation
in terms of semi-standard Young tableaux (SSYT). The reader will find information
about this topic in [4]. Given a partition λ = (λ1, λ2, . . . , λn), a SSYT of shape
λ is an array consisting of λ1 positive integers in the first row, λ2 in the second
row ending with λn integers in the n-th row. These integers are restricted to be
weakly increasing across rows (repetitions are allowed) and strictly increasing down
columns. From this point of view, the Schur function sλ(q) is defined as

sλ(q) =
∑
T

qT

where the sum is over all SSYT of shape λ with entries from {1, 2, . . . , n}. The
symbol qT is a monomial in the variables qj , where the exponent of qj is the
number of appearances of j in T . For example, the array shown in Figure 1 is a
tableau T for the partition (6, 4, 3, 3). The corresponding monomial qT is given by
q1q

3
2q3q

3
4q

4
5q

2
6q7q8.

1 2 2 4 5 5
2 3 4 5
4 6 6
5 7 8

Figure 1. A tableau T for the partition (6, 4, 3, 3)

The number N(µ) of SSYT of shape µ can be obtained by letting q → 1 in the
formula

sµ(1, q, q2, . . . , qn−1) =
∏

1≤i<j≤n

qµi+n−i − qµj+n−j

qj−1 − qi−1

(see page 375 of [18]). This yields

(6.1) N(µ) =
∏

1≤i<j≤n

µi − µj + j − i
j − i

.

The evaluation (2.2) of Wallis’ integral (1.3) may be recovered from here as

Gn+1 =
sλ(n)(1n+1)
sλ(n+2)(1n+1)

=
N(λ(n))

N(λ(n+ 2))
=

1
22n

(
2n
n

)
.

7. A counting problem

The k-central binomial coefficients c(n, k), defined by the generating function

(1− k2x)−1/k =
∑
n≥0

c(n, k)xn,

are given by

c(n, k) =
kn

n!

n−1∏
m=1

(1 + km).

These coefficients are integers and their divisibility properties have been studied in
[19]. In particular, the authors establish that the k-central binomial coefficients are
always divisible by k and characterize their p-adic valuations.
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The next result attempts an interpretation of what the numbers −c(n,−k) count.

Corollary 7.1. Let λ and µ be the partitions given by

λ = (k − 1) · λ(n)− 1n−1,

µ = (k − 1) · λ(n+ 1).

Then the integer −c(n,−k) enumerates the ratio between the total number of SSYT
of shapes λ and µ times the factor k2n−1/n.

Proof. By Theorem 5.3 and (6.1),

Gn,k,1(1n) =
sλ(1n)
sµ(1n)

=
n−1∏
m=1

km− 1
km

.

The claim follows. �

Remark 7.2. R. Stanley pointed out some interesting Schur function quotient re-
sults. See exercises 7.30 and 7.32 in [18].

8. An integral from Gradshteyn and Ryzhik

It is now demonstrated how the previous results may be used to prove an integral
evaluation found as entry 3.112 in [8]. The main tool is the (dual) Jacobi-Trudi
identity which expresses a Schur function in terms of elementary symmetric func-
tions. Namely, if λ is a partition such that its conjugate λ′ has length at most m
then

sλ =
∣∣eλ′i−i+j∣∣1≤i,j≤m .

This identity may be found for instance in [18, Corollary 7.16.2].

Theorem 8.1. Let

gn(x) = b0x
2n−2 + b1x

2n−4 + . . .+ bn−1,

fn(x) = a0x
n + a1x

n−1 + . . .+ an

and assume that all roots of fn lie in the upper half-plane. Then∫ ∞
−∞

gn(x)dx
fn(x)fn(−x)

=
πi

a0

Mn

∆n

where

∆n =

∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . 0
a0 a2 a4 0
0 a1 a3 0
...

. . .
0 0 0 an

∣∣∣∣∣∣∣∣∣∣∣
, Mn =

∣∣∣∣∣∣∣∣∣∣∣

b0 b1 b2 . . . bn−1

a0 a2 a4 0
0 a1 a3 0
...

. . .
0 0 0 an

∣∣∣∣∣∣∣∣∣∣∣
.

Proof. Write fn(x) = a0

∏n
j=1(x− iqj). By assumption, <qj > 0. Further,

fn(x)fn(−x) = (−1)na2
0

n∏
j=1

(x2 + q2j ).

Let q = (q1, q2, . . . , qn). It follows from Theorem 5.3 that∫ ∞
−∞

x2βdx

fn(x)fn(−x)
=

(−1)n+βπ

a2
0

sλ(n−1)−2β·1n−1(q)
sλ(n+1)−2β·1n(q)

=
(−1)nπ
a2
0

sλ′(q)
sλ(n+1)(q)
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where λ = λ(n−1)+2·1β . The latter equality is obtained by writing the quotient of
(generalized) Schur functions as a quotient of alternants, multiplying the k-th row
with q2βk each, and reordering the columns of the determinant in the numerator.
The right-hand side now is a quotient of Schur functions to which the Jacobi-Trudi
identity may be applied.

sλ(n+1)(q) = |en+1−2k+j(q)|1≤k,j≤n = |e2k−j(q)|1≤k,j≤n .

Note that ek(q) = ikak. Hence, sλ(n+1)(q) = in(n+1)/2∆n. The term sλ′(q) is
dealt with analogously. The claim follows by expanding the determinant Mn with
respect to the first row. �

9. A sum related to Feynman diagrams

Particle scattering in quantum field theory is usually described in terms of Feyn-
man diagrams. A Feynman diagram is a graphical representation of a particular
term arsing in the expansion of the relevant quantum mechanical scattering ampli-
tude as a power series in the coupling constants that parametrize the strengths of
the interactions.

From the mathematical point of view, a Feynman diagram is a graph to which
a certain function is associated. If the graph has circuits (loops, in the physics
terminology) then this function is defined in terms of a number of integrals over
the 4-dimensional momemntum space (k0,k), where k0 is the energy integration
variable and k is a 3-dimensional momentum variable.

Feynman diagrams also appear in calculations of the thermodynamic properties
of a system described by quantum fields. In this context, the integral over the
energy-component of a Feynman loop diagram is replaced by a summation over
discrete energy values. These Matsubara sums were introduced in [14]. A general
method to compute these sums in terms of an associated integral was presented in
[5].

These techniques, applied to the expression (4.2) for the integral Gn(q) give the
value of the sum associated with the one-loop Feynman diagram consisting of n
vertices and vanishing external momenta, Ni = 0, as depicted in Figure 2.

Figure 2. The one-loop Feynman diagram with n vertices and
vanishing external momenta. m is the summation variable associ-
ated to each of the internal lines.
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The Matsubara sum associated to the diagram in Figure 2 is

(9.1) Mn(q) :=
∞∑

m=−∞

n∏
k=1

1
m2 + q2k

.

This sum was denoted by SG in [5]; the notation has been changed here to avoid
confusion.

Example 9.1. The first few Matsubara sums are

M1(q1) = π
D1

q1
,

M2(q1, q2) = π
q2D1 − q1D2

q1q2(q22 − q21)
,

M3(q1, q2, q3) = π
q2q3(q22 − q23)D1 + q3q1(q23 − q21)D2 + q1q2(q21 − q22)D3

q1q2q3(q23 − q22)(q22 − q21)(q21 − q23)

with Dj = coth(πqj).

Theorem 9.2. The Matsubara sum Mn(q) is given by

Mn(q) = π

n∑
k=1

coth(πqk)
qk

n∏
j=1

j 6=k

1
q2j − q2k

.

Proof. This follows from the partial fraction expansion
n∏
k=1

1
m2 + q2k

=
n∑
k=1

1
q2k +m2

∏
j 6=k

1
q2j − q2k

,

compare (4.3), switching the order of summation, and employing the classical

π coth(πz)
z

=
∞∑

m=−∞

1
z2 +m2

.

�

Proof 2. The method developed in [5] shows that

(9.2) Mn(q) = π

[
1 +

n∑
m=1

nb(qm)(1−Rm)

]
Gn(q)

where Gn(q) is the integral defined in (4.1),

nb(q) =
1

e2πq − 1
=

1
2

(cothπq − 1) ,

and Rm is the reflection operator defined by

Rmf(q1, . . . , qm, . . .) = f(q1, . . . ,−qm, . . .).

To use (9.2) combined with the evaluation (4.2) of Gn(q) it is required to compute
the action of each 1−Rm on the summands of (4.2). Namely,

(1−Rm)
1
qk

n∏
j=1

j 6=k

1
q2j − q2k

=
2δkm
qk

n∏
j=1

j 6=k

1
q2j − q2k
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where δkm is the Kronecker delta. Therefore,

nb(qm)(1−Rm)Gn(q) =
2 nb(qm)
qm

n∏
j=1

j 6=m

1
q2j − q2m

,

and the result follows from 2 nb(q) = coth(πq)− 1. �

We close by giving an expansion of Mn(q) in terms of symmetric functions.
Starting with the classical expansion

π coth qk
qk

=
1
q2k
− 2

∞∑
m=1

(−1)mq2m−2
k ζ(2m),

where ζ(s) denotes the Riemann zeta function, it follows that

Mn(q) =
n∑
k=1

1
q2k

∏
j 6=k

1
q2j − q2k

− 2
∞∑
m=1

(−1)mζ(2m)
n∑
k=1

q
2(m−1)
k

∏
j 6=k

1
q2j − q2k

.

Using the identity (hj being the complete homogeneous symmetric function)

hm−n(x1, . . . , xn) = (−1)n−1
n∑
k=1

xm−1
k

∏
j 6=k

1
xj − xk

,

which follows from Lemma 5.2 (or see page 450, Exercise 7.4 of [18]), this proves:

Corollary 9.3. The Matsubara sum Mn(q), defined in (9.1), is given by

Mn(q) =
1

en(q2)
+ 2

∞∑
m=0

(−1)mζ(2m+ 2n)hm(q2).

10. Conclusions

The evaluation of definite integrals has the charming quality of taking the reader
for a tour of many parts of mathematics. An innocent-looking generalization of one
of the oldest formulas in analysis has been shown to connect the work of the four
authors in the title.
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