THE EXPANSION OF SOME CLASSICAL FUNCTION
INVOLVING BERNOULLI NUMBERS

The Bernoulli numbers defined by the exponential generating function
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also appear in some other functions that are simple modifications of (1).
The first one comes by multiplying the generating function by a fixed power.
This gives
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Now introduce the notation
(3) [t"] f(t) = Coefficient of t" in the expansion of f(¢).
Then (2) states that
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To obtain another function, write (1) in the form
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and this can be written as
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The function on the left is the quotient of hyperbolic cosine over hyperbolic sine,
so it is the hyperbolic cotangent
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The expansion on the right of (8) is
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The first three terms on the right are
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after replacing ¢ by 2¢ becomes
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The Bernoulli numbers appearing in the last series vanish when k + 1 is odd, that
is, k is even. Therefore, we let k = 25+ 1 and the new index j starts at j = 1. This
gives
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Now observe that
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and replacing ¢ by it in (13) gives, using
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Theorem 1. The coefficients of cott around t = 0 are given by
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Another function that can be written using the generating function of the Bernoulli
numbers is
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The product is now expanded in series as
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and using the formula to multiply series
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The fact that the left-hand side is an even function shows that
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Another approach to the is given next:
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Using (18) we see that the sum is the coefficient of ¢ /r! in the product
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and this function is even, so the odd coefficients must vanish. This is too long and
we are still using the fact that some function is even. Can one prove this directly?

Up to now we have
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This proves:
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Question: is there a way to simplify this?
The basic identity
(25) cotz — 2cot 2x = tanz

can be used to compute the tangent numbers defined by the expansion
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The result of Theorem 1 shows that T,, = 0 for n even. This is consistent with
the fact that tanx is an odd function. For n odd, say n = 2j — 1, the coefficient of
t" on the left-hand side is also obtained from Theorem 1:
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Theorem 2. The tangent numbers, defined by the series
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