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A new finite difference numerical method for modeling the interaction between
flexible elastic membranes and an incompressible fluid in a two-dimensional domain
is presented. The method differs from existing methods in the way the forces exerted
by the membranes on the fluid are modeled. These are described by a collection of
regularized point forces, and the velocity field they induce is computed directly on
a regular Cartesian grid via a smoothed dipole potential. Comparisons between this
method and the immersed boundary method of Peskin and McQueen are presented.
The results show that the method proposed here preserves volumes better and has a
higher order of convergence. c© 2000 Academic Press
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1. INTRODUCTION

A high-order numerical method for the solution of two-dimensional immersed boundary
problems is presented. In this context, immersed boundaries refer to thin, flexible membranes
within a constant density, incompressible fluid. The key feature of these problems is that both
the fluid and the immersed boundary motions must be computed simultaneously, accounting
for the interaction between the forces developed along the boundaries and the motion of
the fluid surrounding them. Existing numerical methods for immersed boundary problems
can be placed into two general categories: methods that determine the jump in the variables
that are discontinuous across the boundaries (see, e.g., [16]) and methods that regularize
the same variables to smooth out the jumps. The immersed boundary method introduced
by Peskin and developed further by Peskin and McQueen fits into the second category
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[17, 19, 18]. This method has been applied to many physiological and biological problems,
including blood flow in the heart, flows in collapsible tubes [21], sperm motility and other
flagellar motions [12, 9, 11], platelet aggregation, and others [13].

The immersed boundary method represents moving boundaries with Lagrangian markers
at which boundary forces are computed. These forces are then transferred to an underlying
Cartesian grid upon which the Navier–Stokes equations are solved. This approach has
two advantages: the method is relatively simple to implement even in the presence of
complicated boundaries and it allows in principle the use of any grid-based fluid solver.
However, the immersed boundary method displays only first-order convergence properties
near the boundaries in spite of second-order computational procedures for the forces and the
fluid motion. The reason for this is the manner in which the membrane forces are regularized
and transferred to the grid. An overview of the immersed boundary method is presented in
Section 2 as well as a new version of the method designed to improve its accuracy while
holding to the same force regularization methodology. This is accomplished by designing
higher-order procedures for representing the boundary forces and for modeling the fluid
motion.

In Section 3, a new way of dealing with the boundary–grid communication is offered
which leads to a practical high-order numerical scheme. The new method, the blob pro-
jection method, is based on ideas taken from vortex and impulse methods [3, 4, 6, 7], in
which a cutoff function, or blob, is used to regularize the force field. While the numerical
parameters must satisfy certain constraints for stability and accuracy, the support of the blob
is decoupled from the other numerical parameters in the method. This important property
gives it flexibility and allows one to scale the size of the blob support in a way that balances
the various errors in the method.

In Section 4, a careful study of the accuracy and convergence rates for the different
approaches is presented. We first examine the convergence properties of the immersed
boundary method and verify that the improved version of the immersed boundary method
does yield somewhat higher convergence rates. For the improvements achieved, however,
the cost associated with this method is high, making it impractical in some situations. We
then show that the blob projection method yields even better accuracy and convergence rates
than the improved immersed boundary method at a reasonable cost. Finally we identify the
step in these methods that reduces the convergence rate below what might be expected from
considering only the accuracy of the fluid solver.

2. THE PROBLEM STATEMENT

The incompressible Navier–Stokes equations are

ut = −(u · ∇)u−∇ p+ ν1u+ F, ∇ · u = 0. (1)

For immersed boundary problems in two dimensions, the forceF arises along the curves that
define the immersed boundaries. Ifz(α, t) is a parametric representation of the immersed
boundary at timet , then one can write

F(x, t) =
∫ L

0
f(α, t)δ(x− z(α, t)) dα, (2)
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where the force densityf(α, t) is problem-specific but is typically a function of the local
curvature of the membrane and includes tensile and bending components. This force field
is singular since it is given by the line integral of a two-dimensional delta function.

We are interested in the dynamics of the boundary which is assumed to move with the
fluid velocity according to

dz(α, t)
dt

= u(z(α, t), t) =
∫
R2

u(x, t)δ(x− z(α, t)) dx. (3)

2.1. The Projection Formulation

The numerical method proposed in this paper is based on the projection formulation of
the Navier–Stokes equations. The following standard decomposition theorem is needed in
order to state the formulation.

THEOREM 2.1. A vector field w in a bounded domainD ∈R2 can be decomposed
uniquely intow = u + ∇ξ , whereu satisfies∇ · u = 0 in D and appropriate boundary
conditions.

The proof of this theorem also indicates the numerical procedure used for implementing
projections. One is interested in findingu, which plays the role of the fluid velocity. Taking
the divergence ofw = u+∇ξ yields

1ξ = ∇ · w, in D
B(ξ,w) = 0, on ∂D,

(4)

whereB(ξ,w) represents the appropriate boundary conditions consistent with the definition
of the decomposition. The fieldu = w−∇ξ is the projection ofw onto the space of zero-
divergence vector fields and is denoted byu = Pw.

In two dimensions the fieldu satisfying∇ ·u = 0 can be written in an equivalent manner
using the stream functionψ asu = (ψy,−ψx). Using this variable the decomposition is
w = (ψy,−ψx)+ (ξx, ξy), whereψ is the solution of

−1ψ = ∇ × w, in D
B(ψ,w) = 0, on ∂D,

(5)

where againB(ψ,w) represents the original boundary conditions foru written in terms
of ψ .

Using projections, one can write the incompressible Navier–Stokes Eq. (1) as

ut = P [−(u · ∇)u−∇ p+ ν1u+ F]. (6)

When periodicity is imposed as the boundary condition, the pressure term on the right does
not contribute to the projection and can be eliminated altogether.

2.2. The Immersed Boundary Method

A brief description of the immersed boundary method is presented in this section. More
detailed treatments can be found in [18]. Consider a two-dimensional curve that represents
a membrane immersed in the fluid. The membrane is discretized byM points, zk for
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FIG. 1. Immersed boundaries are described by a Lagrangian collection of points embedded in a fluid domain
covered by a regular grid. The grid cells areh× h and the initial point spacing along boundaries is1`.

k = 1, . . . ,M . Let1` denote the separation between points along the immersed boundary.
Suppose that the fluid occupies the unit square [0, 1]× [0, 1] covered with a grid of size
h = 1/N as in Fig. 1.

Let un
i, j represent the velocity at the grid point(i, j ) at time stepn, andũn

k denote the
velocity at thekth particle position at time stepn. At every time step, givenzn

k, un
i, j , and

ũn
k, the goal is to compute new particle positionszn+1

k and grid velocitiesun+1
i, j and then to

interpolate the latter to find̃un+1
k at the new particle locations. For simplicity we describe

one step of the time integration based on forward Euler’s method, although in practice we
use a Runge–Kutta method. The boundary position and grid velocities are updated with

zn+1
k = zn

k +1t ũn
k

un+1
i, j = un

i, j +1tP
[−(un

i, j · ∇h
)
un

i, j + ν1hun
i, j + Fn

i, j

]
where∇h and1h represent discrete operators acting on grid functions.

The new boundary positions can be computed first from the velocitiesũn
k. To update the

grid velocities one must evaluate the forcesFn
i, j at each grid point in the domain so that

the Navier–Stokes equations can be solved on the grid. This requires first the computation
of the force densitiesf(α) given the current boundary configuration. A typical feature of
immersed boundary problems is that the forces are evaluated at the membrane markers
which do not necessarily coincide with grid nodes. To represent the forces at the grid nodes,
the immersed boundary method makes use of an approximation of the delta function,Dh,
and Eq. (2) to spread the forces to the grid. The result is

Fn
i, j =

M∑
k=1

fn
k Dh

(
xi, j − zn

k

)
1`, (7)
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wherexi, j is the grid node(i, j ) and fn
k is the force density at the boundary pointzn

k.
The approximate delta function is the product of one-dimensional discrete delta functions,
Dh(x) = dh(x)dh(y). There are various possible choices fordh(x); a typical one that has
been used extensively is

dh(x) =
{

1
4h

[
1+ cos

(
πx
2h

)]
, |x| ≤ 2h

0, |x| > 2h.
(8)

This function isC1(R), has unit mass, and satisfies
∫∞
−∞ xdh(x) dx = 0. Note that the

support of this function is always an interval of length equal to four grid cells regardless of
the grid size. In other words, the support ofdh scales linearly withh.

Once the forces are computed along the immersed boundaries and spread to the grid, one
can use any appropriate numerical method to update the grid velocities, since all quantities,
including the forces, have now been computed on the grid. Once the boundary position
and grid velocities have been updated, the last remaining step is to interpolate the updated
velocities from the grid back to the immersed boundary points. This is done by discretizing
Eq. (3) using the same approximate delta function

ũn+1
k =

∑
i, j

un+1
i, j Dh

(
xi, j − zn+1

k

)
h2. (9)

A version of the immersed boundary method which uses second-order time integration and
finite differencing in space leads to a scheme whose accuracy is formally second order. As
will be seen in the numerical results of Section 4 the observed convergence rate of this
method is lower than 2. A version which is formally fourth order can also be designed. This
is explained next.

2.3. A Formally Fourth-Order Immersed Boundary Method

One might expect that a version of the immersed boundary method which uses fourth-
order procedures for the fluid solver, the time integration, the force spreading, and the
velocity interpolation would yield higher convergence rates than the method outlined above.
To investigate this, a fourth-order approximate delta function is required. Following the
design of previous functions one choice is

dh(x) =
{

1
8h

[
1+ 2

9(π
2− 6) cos

(
πx
2h

)+ 1
9(2π

2− 3) cos
(
πx
4h

)]
, |x| ≤ 4h

0, |x| > 4h
(10)

which isC1(R), has unit mass, and satisfies
∫∞
−∞ xpdh(x) dx = 0 for p = 1, 2, 3. Although

the support of this function remains a fixed multiple ofh in each direction (8h × 8h), the
support is wider than the previous function. This form carries a substantial computational
cost which is discussed in Section 2.4.

One can also define the order of an approximate delta function based on discrete moment
conditions rather than the integrals mentioned above. Examples of second- and fourth-order
functions of this type appear in [19, 22], respectively. Appropriately scaled, those functions
agree qualitatively with the ones used here. To our knowledge, no significant differences in
the results have been reported from the use of those functions as a substitute for the ones
defined here.
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The discrete delta function described above is coupled with standard fourth-order centered
differences for the advective and diffusive derivatives in Eq. (6). The temporal integration
for the formally fourth-order immersed boundary method is done with the standard Runge–
Kutta method. The discretization for the projection is disussed below.

2.4. The Projection on the Grid

In the immersed boundary method, the discrete projection is implemented via the solu-
tion of Eq. (4). This requires a choice of discretization of the Laplacian, divergence, and
gradient operators. Since this choice affects the accuracy properties of the method, several
different projections are used here for comparison. In each case, the same finite difference
approximations used to define the gradient operator, say∇h = (Dx, Dy), are also used to
compute the divergence. Moreover, the Laplacian1h = D2

x + D2
y is used to solve Eq. (4).

In order for this procedure to define an exact projection, i.e., one for which the discrete
divergence of the projected field is identically zero, the gradient and divergence operators
must satisfy an adjoint condition [5]. An approximate projection results if this is not the
case.

In this paper the immersed boundary method was implemented with three different types
of projections: an exact projection with∇h computed using standard centered differences,
an approximate projection with∇h as suggested by Peskin and Printz [20], and an exact
projection with∇h defined spectrally as the square root of a compact second-derivative
operator [8]. As an example of the latter case, the second-order spectral representation of
Dx is

D̂x(k) =
√
(−2+ 2 cos(2πkh))/h2.

The projection proposed by Peskin and Printz uses a gradient stencil derived from the
approximate delta function. The operatorsDx andDy derived from Eq. (8) were developed
in [20] and require a 5-by-5 stencil. For the formally fourth-order immersed boundary
method a new gradient operator must be derived based on the function in Eq. (10). This
new gradient requires a dense 9-by-9 stencil which results in a substantial computational
expense since the right-hand side of Eq. (4) and the gradient ofξ in the last step of the
projection are computed in physical space at every grid point. For periodic domains, one
could alternatively evaluate the divergence and gradient in Fourier space, which would
make the cost independent of the stencil size. However, there would be an increased cost
associated with performing an additional FFT and inverse FFT.

3. THE BLOB PROJECTION METHOD

The new approach is based on the observation that, depending on the boundary conditions
for the velocityu, the projection in Eq. (6) is a linear operator. This is certainly true in the
case of periodic boundary conditions so that the linearity of the projection implies

ut = P[−(u · ∇)u+ ν1u] + PF. (11)

This representation separates the quantities that are evaluated on the grid (the velocities) and
those evaluated at the immersed boundary points (the forces). One can use a regularized
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form of the forces along the boundary to find an explicit expression that represents the
projection of these forces without first transferring the forces to the grid. A recipe for doing
this is explained below.

3.1. The Numerical Method

Consider a finite difference numerical method based on Eq. (11) with doubly periodic
boundary conditions. Using the notation of previous sections, the equation is then

un+1
i, j − un

i, j

1t
= P[−(un

i, j · ∇h
)
un

i, j + ν1hun
i, j

]+ (PFn)i, j . (12)

All quantities containingun are known on the grid so the first term on the right-hand side
can be readily evaluated with any number of existing numerical methods. On the other hand,
the forces are given by a discretization of Eq. (2) at the immersed boundary pointszk.

The approach proposed here is motivated by the regularizations used in Lagrangian
methods such as vortex and impulse methods. The cutoffs are smooth functions designed to
satisfy certain conditions in order to formally give high-order convergence to the method.
One advantage of this approach is that the cutoff radiusδ is a numerical parameter that is
not fixed a priori as a multiple ofh but can be chosen separately.

Consider the approximation to Eq. (2) given by

F̃(x) = 1`
M∑

k=1

fkφδ(x− zk), (13)

where the cutoff isφδ(x) = δ−2φ(|x|/δ) andφ is a radially symmetric function satisfying
appropriate moment conditions.

The projection of the regularized force field in Eq. (13) evaluated at an arbitrary pointx
can be found explicitly to be (see [4, 6])

PF̃(x) = 1`
M∑

k=1

1

2
fkφδ(r )+ 1

2π
[fk − 2(fk · x̂k)x̂k]

r F ′(r )− 2F(r )

2r 2
, (14)

wherer = |x− zk|, x̂k = (x− zk)/r , andF(r ) = 2π
∫ r

0 sφδ(s) ds. Each term in this sum
represents a regularized dipole field which is oriented in the directionfk. An example of
this dipole field is shown in Fig. 2.

In principle, the expression in Eq. (14) can be evaluated at any locationx. However,
since the method requires the velocity at every grid point, it would be inefficient to use this
equation directly. The success of the method depends on the fast evaluation of this projected
field, which is explained in the next section. In summary, the algorithm is

1. compute the new forcesfn
k at the membrane pointszn

k;
2. computeu1 = 1tP[−(un

i, j · ∇h)un
i, j + ν1hun

i, j ] using finite differences;
3. evaluateu2 = 1t (PF̃)i, j at the grid points (see next section);
4. update the grid velocity withun+1 = un + u1+ u2;
5. update the position of boundary points byzn+1

k = zn
k +1t ũn

k; and
6. update the velocity at the membrane points by interpolationũn+1

k = I (un+1
i, j ).
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FIG. 2. Velocity field due to a single force blob of strength(0, 1) located at the origin. The valueδ = 1 was
used for this illustration.

For step 2, centered finite difference operators are used to calculate the advective and
diffusive derivative terms in Eq. (12). Second- or fourth-order versions of these operators can
be made for this method. While the description above was made using Euler’s method for
the temporal integration, in practice a standard Runge–Kutta algorithm is used. A formally
second-order method uses second-order finite differencing and Runge–Kutta. A formally
fourth-order method uses fourth-order versions.

For the problems presented here, the stiffness of the boundary forces is the dominant
restriction on the time step; hence the restriction on the time step imposed by the explicit
differencing of advective and diffusive terms is not an issue. The implementation of inte-
grators for problems where the stiffness in the boundary makes the time step unreasonably
small (see, e.g., [10, 15]) is a topic of future work.

The interpolation procedure in step 6 is not tied to the spreading operator, as is the case
in the immersed boundary method. Here, a 4× 4 patch of grid surrounding each immersed
boundary point is used to compute its velocity with a bi-cubic polynomial interpolant. The
resulting approximation is fourth-order accurate.

3.2. Evaluation ofPF̃ at Grid Points

The third step in the algorithm requires some explanation. The projected field in Eq. (14)
does not have compact support; instead, it decays like 1/r 2 for larger . A direct evaluation
of this equation at all grid points would requireO(M N2) amount of work, whereM is the
number of points defining the immersed boundary andN is the number of grid points in
each spatial direction. Additional work would be required to account for the periodicity of
the problem. This would be prohibitively expensive for even a moderate value ofM ; hence
a fast procedure, which is similar in spirit to Anderson’s method of local corrections [1], is
used to effect the evaluation.
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The fast evaluation procedure utilizes the curl ofF̃(x)which is equal to the curl ofPF̃(x).
Since the latter field is a regularized vortex dipole, the curl is concentrated in a region
near the immersed boundary pointszk. The cutoff function in Eq. (13) controls the size of
this region and the rate at which the curl decays. In two dimensions Eq. (5) can be solved
to find the stream function representing the projection of the boundary forcesPF̃(x). The
right-hand side is formed by evaluating and summing the curl of all contributions due to
thefk’s on a small patch of grid centered atzk and setting it to zero outside this patch. The
patch of grid on which the curl is evaluated must be large enough to include the support of
the cutoff function. In the case of cutoffs with infinite support, the neighborhood ofzk must
be sufficiently large so that any discontinuities in the projection field at the edge of the grid
patch are comparable in magnitude to other error terms. For the cutoff functions used here,
a patch of grid of size 4δ is sufficient.

In practice it is not necessary to solve a separate Poisson problem for the stream function
representingPF̃(x). By linearity, a single Poisson problem for both the projections in Eq. (12)
can be solved simultaneously. The curl ofF̃(x) (which is given analytically) is simply added
to the curl of the sum of the advective and diffusive terms (which is calculated by finite
differences) to form the right-hand side of Eq. (5). Standard centered differences are used
for the discrete derivatives, resulting in a method readily adaptable to more complicated
grid geometries.

In three dimensions the stream function is no longer a scalar; hence this procedure would
require the solution of three Poisson problems rather than one. However, a similar procedure
based on the solution of Eq. (4) rather than Eq. (5) could also be used. This would require
evaluating both the force and the divergence of the force on grid patches near the boundary,
but only one Poisson problem would need to be solved in either two or three dimensions.
In two dimensions, the method based on Eq. (5) is more economical since only the curl of
the force is evaluated on the grid (but not the force itself).

4. NUMERICAL RESULTS

The numerical results presented in this section are for both the immersed boundary
method and the new blob projection method proposed in this paper. First, an analysis of
the conservation of volume for the methods will be presented. Two convergence studies are
also presented. The first one is used to test and compare the convergence properties of the
methods, and the second to isolate the cause of the differences in observed convergence
rates.

4.1. A Perturbed Ellipse

The initial conditions for the first example consist of a perturbed elliptical membrane
immersed in a fluid at rest in the unit square. The curve can be described in polar coordinates
by

z(θ) = (r (θ) cos(θ − θ0), r (θ) sin(θ − θ0)),

where

r 2(θ) = a2 cos2(θ)+ b2 sin2(θ)+ ε(− 4
3e−3(θ−π)2 − e−5(θ−θ1)

2 + e−8(θ−θ2)
2)
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FIG. 3. The initial configuration of the immersed boundary for the perturbed ellipse convergence tests and
the solution at time 0.3125.

and 0≤ θ ≤ 2π . The parameters used area= 0.2, b= 0.25, ε= 0.012, θ0=π/3,θ1= 4π/5,
andθ2= 2π/3. The reason for the perturbation is to induce immediate motion of all points of
the boundary and to eliminate any symmetries in the problem. The initial particle spacing is
approximately equal in arc length, although this will not remain true as the boundary moves.
The initial position of the boundary as well as a the solution at a later time are shown in
Fig. 3.

The force density for this problem depends on the curvature and is given by

f(θ) = σκ(θ)n̂,

wheren̂ is the outward unit normal of the curve,σ is a fixed stiffness constant, andκ(θ)
is the curvature atz(θ). In this example the stiffness was set toσ = 1/5. The curvature is
computed in polar coordinates by

κ(θ) = r 2+ 2r ′r − (r ′′)2
[r 2+ (r ′)2]3/2

.

The derivatives ofr with respect toθ are approximated by fitting a sixth-order polynomial
in θ to seven boundary points and evaluating the derivatives of this polynomial at the middle
point.

4.1.1. Volume Conservation

The first set of results compares the volume conservation for different versions of the
immersed boundary method and the blob projection method. First, results were computed
with the immersed boundary method. Second-order projection and time-integration steps
were used and the approximate delta function was the one derived from Eq. (8). The method
was run using a 128×128 grid and a time step of1t = 0.1h. The membrane was discretized
using 400 points so that the initial point separation along it was less than the maximum
empirical value ofh/2 (to keep fluid from leaking across the membrane). The fluid viscosity
used wasν = 0.005. Figure 4 shows the conservation of the volume inside the membrane
using three different projection operators.

The discrete Laplacian operator derived from center differences is a wide 5-point stencil
which decouples the grid into four subgrids. This operator has been reported as having
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FIG. 4. Volume conservation using the immersed boundary method and three different projection operators
with a 128×128 grid and 400 boundary points. The most accurate conservation (×) is achieved with the projection
operator in Peskin and Printz. The least accurate conservation (∗) results from using the decoupled five-point
Laplacian operator.

poor volume conservation properties which is confirmed by the steepest curve in the figure.
The difference operator for improved volume conservation proposed by Peskin and Printz
in [20] is a dense stencil on a 5-by-5 patch of grid and is derived from the approximate
delta function. The volume conservation using this operator is represented in the figure
by the top curve and gives the best conservation. The figure also shows the results using
a second-order version of the spectral operator described in Section 2.4. The application
of this operator results in an exact projection with a stencil that does not decouple the
grid values of the projected field. It is also unrelated to the approximate delta function used.
Although the volume is not preserved as well as the operator derived from the delta function,
the improvement over the decoupled operator is significant.

Refining the grid and the membrane discretization reduces the errors and improves the
volume conservation. Reducing the numerical parameters by a factor of 2 gives the results
in Fig. 5. The volume conservation using any of the three projection operators improves by
about a factor of 2, indicating linear dependence on the numerical parameters. This is in
spite of using second-order numerical methods in space and time.

FIG. 5. Volume conservation using the immersed boundary method and three different projection operators
with a 256×256 grid and 800 boundary points. The most accurate conservation (×) is achieved with the projection
operator in Peskin and Printz. The least accurate conservation (∗) results from using the decoupled five-point
Laplacian operator.
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FIG. 6. Volume conservation using the fourth-order immersed boundary method and three different projection
operators with a 128× 128 grid and 400 boundary points. The most accurate conservation (×) is achieved with
the projection operator in Peskin and Printz. The least accurate conservation (∗) results from using a standard
centered projection operator.

Next, the same problem was run using the formally fourth-order method outlined in
Section 2.3. The volume conservation results are shown in Fig. 6. The conservation prop-
erties have in fact improved by a factor of 10 over the corresponding second-order results
of Fig. 4. As in the first case, the worst performance is observed when using a standard
centered difference projection despite the fact that the fourth-order stencil for the Laplacian
does not decouple.

The same problem was then solved using the blob projection method. Here again, second-
order projection and time integration were employed. The regularizations used were based
on the fourth-order cutoff

φ4(r ) = 1

π
(2− r 2)e−r 2

(15)

and the eighth-order cutoff

φ8(r ) = 1

6π
(24− 36r 2+ 12r 4− r 6)e−r 2

(16)

with δ = 4h. The order of the blob refers to the number of moment conditions it satisfies.
The cutoff radiusδ is not locked as a fixed multiple ofh as in the immersed boundary
method soδ can be chosen in different ways. Figure 7 shows a comparison between the
best conservation plot obtained with the second-order immersed boundary method and the
blob projection method. The results from the blob projection method are at least 10 times
better than the immersed boundary result with comparable parameters.

The details of the volume conservation are appreciated better in Fig. 8, which shows the
results using a 128× 128 grid and 400 boundary points. These results were obtained using
the two blobs mentioned earlier and the cutoff parameter set toδ = 4h andδ = 2h.

While the cutoff functions are formally of high order, the rest of the numerical method
being used is second order. In this sense the conservation properties displayed by the method
are extremely satisfying. Regardless of the choice of cutoff function,δmust be chosen larger
thanh in order to regularize the velocities over a region spanning several grid nodes. The
results also suggest that there is nothing to be gained in terms of volume conservation by
using an eighth-order cutoff versus a fourth-order one.
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FIG. 7. Volume conservation using the second-order version of the blob projection method and the immersed
boundary method. Results for a 128× 128 grid with 400 points are shown in the top frame, and those for a
256× 256 grid with 800 points in the bottom. The different curves represent the second-order immersed boun-
dary method (∗), the second-order blob projection method with fourth-order blobs (×), and with eighth-order
blobs (s).

Finally, the blob projection method using fourth-order spatial and temporal accuracy was
implemented and used for the same problem. Figure 9 shows a comparison between the
immersed boundary and the blob projection methods using fourth-order differencing. For
these results the immersed boundary method was run with the improved volume conserva-
tion projection which yielded the best results. Looking at the scales along the axes there
are two conclusions that one can draw. One is that the blob projection method yields better
volume conservation than the immersed boundary method. The second one is that as the
grid and boundary are refined, the error in the blob projection method is reduced by a larger
factor (about 6) than the error in the immersed boundary method (about 2).

FIG. 8. Volume conservation using the second-order version of the blob projection method on a 128× 128
grid with 400 points. The results of four runs are shown. Two of them use a fourth-order cutoff function and cutoff
parameterδ= 4h and 2h (denoted by× ands). The other two use an eighth-order cutoff function with the same
choices ofδ (denoted by∗ and?). These results should be compared to Fig. 4.
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FIG. 9. Volume conservation using the fourth-order version of the blob projection method and the immersed
boundary method. Results for a 128× 128 grid with 400 points are in the top frame, and those for a 256× 256
grid with 800 points in the bottom. The different curves represent the fourth-order immersed boundary method
(∗) and the fourth-order blob projection method withδ= 4h (×) and withδ = 2h (s).

4.1.2. Convergence Rates

Next we explore the convergence rates of the immersed boundary and blob projection
methods on the perturbed ellipse problem. Convergence rates for immersed boundary prob-
lems can be calculated in different ways with varying results. Several procedures are em-
ployed here to illustrate this fact.

Estimating convergence rates for immersed boundary problems is more complicated than
for standard problems for incompressible flow. In the blob projection method, there are three
separate numerical parameters which can be varied in a convergence test: the grid sizeh,
the initial particle separation along the boundary1`, and the cutoff radiusδ. The first two
are generally of the same size or with1` somewhat smaller thanh, while δ must be larger
than1` but is free to vary. In the immersed boundary method, the analogs of these three pa-
rameters are necessarily scaled linearly. Therefore, convergence rates will first be presented
for this scaling. Later, convergence tests for the blob projection method where the three nu-
merical parameters are not reduced together will be presented in order to examine different
parts of the numerical error.

Several quantities can be examined to estimate convergence rates. First, the position of
and velocity at the immersed boundary points can be measured. Convergence rates can be
calculated for each individual point yielding a vector of convergence rates of which a norm
can be taken. This will be referred to as thenorm of the rates. Alternatively, the entire
boundary can be considered a vector of positions or velocities and a convergence rate can
be calculated by computing the norm of errors of this vector. This will be referred to as the
rate of the norm. Lastly, the velocity on the grid can be used to calculate convergence rates
as well. Since the velocities at immersed boundary points are already being considered,
convergence rates for the velocity on the grid will only be computed on patches of grid well
separated from the immersed boundary.
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The convergence rates themselves are computed in two different ways. Richardson ex-
trapolation using three numerical runs of different resolution is one way to estimate rates.
Here grids of sizeN× N with N = 256, 384, and 576 are used with corresponding bound-
aries of 600, 900, and 1350 points. For example, ifUN represents the velocity of theN×N
run, then one estimate of the convergence rate would be

rate= ln(‖U256−U384‖p/‖U384−U576‖p)

ln(3/2)
.

A different way to estimate the error in a given calculation is by comparing the result to a
highly resolved solution. For this, a solution was computed on a 1536× 1536 grid using
4800 boundary points and a time step of 0.025h. We will call this solution the reference
solution and the reported error in a given calculation is the deviation from the reference
solution. Two coarser runs using grids of sizeN = 256 and 512 with 800 and 1600 boundary
points respectively were then used to estimate the convergence rate.

For instance, leth be the grid size of the reference solution, i.e.,h= 1/1536. Then
assuming that the error is of the formChp, one can compute

ε = C(6h)p − Chp

C(3h)p − Chp
= 6p − 1

3p − 1
,

from which p can be estimated.

FIG. 10. Convergence rates for the immersed boundary method computed by comparison with a reference
solution. The top graph shows the rate of theL1 (×), L2 (s), andL∞ (∗) norms of the boundary particle positions.
The bottom graph shows the same for the boundary particle velocities.
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The first set of results refers to the solution of the perturbed ellipse problem using the
(formally second-order) immersed boundary method. The solutions were computed to time
1/32 using a time step1t = 0.1h and compared to a reference solution at time intervals of
1/640. Figure 10 shows the computed convergence rates of the velocities usingh = 1/256
andh = 1/512 and reducing1` linearly with h. The top plot shows the rate of the norms
for the particle positions using the one, two, and infinity norms. The bottom plot shows the
rate of the norms for the velocities at the immersed boundary points. Note that the rates are
all approximately 1.5.

Figure 11 shows three additional measures of convergence rates. The top graph shows the
L1 andL2 norms of the rates of individual particle positions, while the middle graph shows
the same for the particle velocities. The discrepancy between the two curves in the middle
graph indicates that there is a large variation in the velocity rates computed at each point.
The velocity at some particles may display a convergence rate higher than 2 while others
a rate less than 1. This is perhaps an expression of noise in the solutions. The bottom plot
shows the observed convergence rates on a patch of grid away from the immersed boundary.
All norms show agreement.

The immersed boundary method shows convergence rates of order about 1.5 for the
immersed boundary variablesuα andz despite being formally second order. The reason for
this is conjectured to be the treatment of the forces. In particular, spreading the forces to the

FIG. 11. Convergence rates for the immersed boundary method computed by comparison with a reference
solution. The top graph shows theL1 andL2 norms of the rates of individual particle positions; the middle graph
shows the same for the particle velocities. The bottom graph shows convergence rates on a patch of grid away
from the immersed boundary.



444 CORTEZ AND MINION

FIG. 12. Convergence rates for the fourth-order immersed boundary method computed by comparison to a
reference solution. The top graph shows the rate of theL1, L2, andL∞ norms of the boundary particle positions.
The bottom graph shows the same for the boundary particle velocities.

grid with an approximate delta function with small support (4h×4h) and then performing a
projection appear not to resolve the flow accurately enough near the immersed boundaries.
The flow away from the boundaries is also affected, showing a convergence rate between
1.5 and 2.

The same experiment was then performed with the version of the immersed boundary
method which uses fourth-order differencing and the improved volume conservation op-
erators derived for the new approximate delta function in Eq. (10). Figures 12 and 13 are
the analogues of Figs. 10 and 11 for this method. In all cases the convergence rates have
improved to a number between 2 and 2.5 for the boundary variables and to 2.5 for the grid
velocity.

The next set of figures shows the same information as in the previous set for the fourth-
order blob projection method. Figures 14 and 15 should be compared with Figs. 12 and 13.
The figures show that the new method is converging at a rate between 2.5 and 3. In these
examples, the size ofδ was set to 4h and hence decreased at the same rate ash. Results
usingδ = 2h are very similar and therefore not shown.

Figures 16 and 17 show the convergence rates computed by Richardson extrapolation
for the blob projection method. The length of these runs is five times that of the previous
runs. Although the convergence rates show increased variability at longer times, the overall
size of the rates is roughly the same as previously computed.

Inspection of the norm of the rate plots for the previous two examples shows a much
smaller discrepancy between theL1 and L2 norms of the individual point rates for the
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FIG. 13. Convergence rates for the fourth-order immersed boundary method computed by comparison to a
reference solution. The top graph shows theL1 and L2 norms of the rates of individual particle positions; the
middle graph shows the same for the particle velocities. The bottom graph shows convergence rates on a patch of
grid away from the immersed boundary.

blob projection method than for the immersed boundary method (see the middle graphs of
Figs. 15 and 13). This indicates that the rates at which the individual boundary particle
positions converge have less variation in the blob projection scheme. This is seen in Fig. 18
where the convergence rates of individual particle positions from both methods were calcu-
lated at time 1/32 by comparison with the reference solution. Here it is clearly seen that the
convergence rates for the blob projection method are much more consistent and less noisy.
The largest oscillations are due to cancellation error at points that are nearly stationary at
this instant and are not meaningful.

4.1.3. Convergence Rates for Fixed Regularization

In the context of Lagrangian methods for Euler flow, such as vortex methods and im-
pulse methods, one defines the cutoff radius asδ=Chq, for q in the range 0≤q≤ 1 (e.g.,
see [14]). In the present context it is not obvious what the optimal scaling should be since
the Lagrangian elements discretize a curve embedded inR2. One choice of scaling that
is easily achieved with the blob projection method is the one associated withq= 0. This
corresponds to a fixed regularization which may be justified by the physical thickness
of the tissue being represented by the immersed boundary in a particular application.
As h,1`→ 0 the convergence rate is expected to reflect the order of the finite difference
method used.



FIG. 14. Convergence rates for the blob projection method computed by comparison with a reference solution.
The top graph shows the rate of theL1, L2, andL∞ norms of the boundary particle positions. The bottom graph
shows the same for the boundary particle velocities.

FIG. 15. Convergence rates for the blob projection method computed by comparison with a reference solution.
The top graph shows theL1 andL2 norms of the rates of individual particle positions; the middle graph shows
the same for the particle velocities. The bottom graph shows convergence rates on a patch of grid away from the
immersed boundary.

446
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FIG. 16. Convergence rates for the blob projection method computed by Richardson extrapolation. The top
graph shows the rate of theL1, L2, andL∞ norms of the boundary particle positions. The bottom graph shows the
same for the boundary particle velocities.

A convergence test using the same initial conditions of the perturbed ellipse experiments
was run using the fourth-order blob function withδ set to 2/256 regardless of the grid size.
The problem was run onN×N grids withN = 256, 384, and 576 to timet = 10/64 using
a CFL number of 0.1 and viscosityν = 0.002. The number of boundary points was again set
to 600, 900, and 1350 so thath and1` remain proportional. The convergence rates for the
position and velocity of membrane points were calculated using Richardson extrapolation
at time intervals of 1/64. Figures 19 and 20 show the results of this experiment. In all
measures, the solution of this regularized problem is converging at about a fourth-order
rate, the formal accuracy of the fluid solver.

The fact that fourth-order convergence rates are observed when the regularization is fixed,
but lower rates are observed whenδ is scaled linearly withh and1`, indicates that there
must be a lower-order component of the overall error which depends onδ. This error is
identified and discussed in the following section.

4.2. Investigation of Boundary Errors

The convergence rates given in the previous section suggest that there is a source of
error in the blob projection method which depends onδ and is responsible for decreasing
the observed rates. A numerical experiment designed to illuminate this error will now be
presented.

The experiment consists of investigating the error in computing the projection of the
boundary forces for a specific boundary configuration. In other words, only the termP(F)
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FIG. 17. Convergence rates for the blob projection method computed by Richardson extrapolation. The top
graph shows theL1 andL2 norms of the rates of individual particle positions; the middle graph shows the same
for the particle velocities. The bottom graph shows convergence rates on a patch of grid away from the immersed
boundary.

is being computed for a single configuration. No dynamics are included. The membrane
shape is an ellipse, for which the curvature-dependent force density can be found exactly.
The fluid motion is ignored; hence only the error due to the discretization of the boundary,
the projection of the boundary forces, and the interpolation of these forces to the boundary
points is relevant.

In order to estimate errors, a reference solution was computed on a 3172× 3172 grid
using 9600 boundary points and the blob in Eq. (15) withδ = 2h. In the first experiment,
the grid size was held fixed ath = 1/1536 and the dependence of the error onδ and1`
was examined. Three sets of runs were done using 400, 800, and 1600 boundary points,
respectively. For each boundary discretization, theL2 norm of the errors at the boundary
locations was computed.

The results are shown in Fig. 21 which illustrates several points. For large values ofδ

the error does not depend on the number of boundary points. This is due to the fact that once
the regularization exceeds a threshold, the membrane resolution is enough to reduce the
discretization error well below the error due to the regularization, which has now become
the leading term. Another observation is that for each boundary configuration, the error has
a minimum at a point whereδ is about the size of1`. For smaller values ofδ the error
increases rapidly. For larger values ofδ the error depends approximately linearly onδ. To
see this, a line of slope 1 has been superimposed on the graph.
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FIG. 18. Individual point convergence rates for the blob projection (top) and formally fourth-order immersed
boundary method (bottom) taken att = 1/32.

FIG. 19. Convergence rates for the blob projection method with fixed regularization computed by Richardson
extrapolation. The top graph shows the rate of theL1, L2, andL∞ norms of the boundary particle positions. The
bottom graph shows the same for the boundary particle velocities.
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FIG. 20. Convergence rates for the blob projection method with fixed regularization computed by Richardson
extrapolation. The top graph shows theL1 andL2 norms of the rates of individual particle positions; the middle
graph shows the same for the particle velocities. The bottom graph shows convergence rates on a patch of grid
away from the immersed boundary.

FIG. 21. Errors in computingP(F) at the immersed boundary for varyingδ. Results for 1600 (∗), 800 (s),
and 400 (♦) boundary points are shown. The size of delta is in units ofh = 1/1536.
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FIG. 22. Errors in computingP(F) at a patch of grid at the center of the ellipse for varyingδ. Results for 1600
(∗), 800 (s), and 400 (♦) boundary points are shown. The size of delta is in units ofh= 1/1536.

The errors away from the influence of the blobs can also be considered. The errors on
a patch of grid located in the center of the ellipse were computed next. The patch covers
the square determined by the points (1/2, 1/2) and (9/16, 9/16) and errors are calculated
using theL1 norm. Results are shown in Fig. 22. In this case, for each of the boundary
configurations, the error on the grid patch does not depend significantly on the size ofδ.
This is because the patch of grid is outside of the support of the blob at each point. Note,
however, that doubling the number of points on the boundary reduces the error roughly by a
factor of 4; i.e., the error away from the immersed boundary depends quadratically on1`.

Finally, a set of runs was done whereh, 1`, andδ are all varied together. Grids of size
N × N were used withN = 128, 192, 256, 384, and 512. For each runδ = 2h, and the
number of boundary points was also scaled linearly withN from 400 forN = 128 to 1600
for N = 512. Errors were computed both at the boundary and on the grid patch and are
displayed in Fig. 23. The error computed at the grid was multiplied by 1000 for ease of

FIG. 23. Errors in computingP(F) on the boundary and at a patch of grid with all three numerical parameters
scaled linearly. The error at the boundary is given by the top line and the error on the grid (multiplied by 1000) by
the bottom. Lines of slope 1 and 2 are also superimposed.
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comparison and is clearly seen to depend quadratically withh as would be expected from
Fig. 22. The error at the boundary decreases linearly as would be expected from Fig. 21.

5. DISCUSSION AND CONCLUSIONS

The last set of results can help explain some features of the convergence properties of the
blob projection method. Whenδ is kept fixed, the method displays fourth-order convergence
rates which reflect the order of the finite differencing and the time integration. Asδ is
decreased there is a source of lower-order error which reduces the observed convergence
rates to between 2.5 and 3. This error is concentrated in a small area of the domain near the
immersed boundary, the size of which decreases withδ. This is evident in the graphs that
show the convergence rates of boundary variables, especially for small values oft . Since
at the beginning of all the simulations the fluid is at rest, the error at the first time step is
due almost entirely toP(F). Because this error is of lower order than the other errors in the
fluid solver, all of the convergence tests show convergence rates which begin lower than is
observed later in the run.

The source of this error (inδ for the blob projection method and inh for the immersed
boundary method) is not specific to the numerical methods discussed here. It is due to
the nature of the problem and appears as a result of computing a line integral in a two-
dimensional domain. The standard moment conditions imposed on the cutoff function used
in the blob projection method are unable to improve the computed solution to the degree
expected. Recent work by Beale and Lai [2] suggests that more appropriate conditions on
the blobs can be used to reduce the errors derived from the regularization of the boundary. In
addition, the weights associated with the trapezoid rule in Eq. (14), applied to an integrand
with large derivatives, can also be modified to increase the order of this discretization error.
The correct procedure for reducing these errors in the context presented here is not known
yet and work remains to be done in this direction. However, once these issues are fully
understood, the blobs and quadrature corrections would be easily incorporated into the blob
projection method.

The results of the numerical experiments indicate that the convergence rates obtained
with the blob projection method are higher than those observed previously. In addition
the method displays some attractive properties. For instance, the volume conservation is
excellent and no special stencils are required to achieve it. The motion of the immersed
boundary shows little noise due to the nature of the regularization by the cutoff function.
This may be of importance when stresses or other quantities involving derivatives of the
flow field are needed at the boundary. The decoupling of the cutoff parameter and the
discretization parameters gives the method more flexibility to balance the different error
terms. Also, extensions to three dimensions appear to be straightforward.
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